K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi điểm cố định là \(M\left(x_0;y_0\right)\)

\(\Rightarrow2mx_0+2m+1=y_0\)  \(\left(\forall m\right)\)

\(\Leftrightarrow2m\left(x_0+1\right)=y_0-1\)  \(\left(\forall m\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\y_0-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)

  Vậy đường thẳng luôn đi qua \(M\left(-1;1\right)\)

4 tháng 2 2021

lại nx à

6 tháng 8 2019

Chứng minh họ đường thẳng y = mx + (2m + 1) (1) luôn đi qua một điểm cố định nào đó.

Giả sử điểm A( x o ;  y o ) là điểm mà họ đường thẳng (1) đi qua với mọi m. Khi đó tọa độ điểm A nghiệm đúng phương trình hàm số (1).

Với mọi m, ta có:  y o  = m x o  + (2m + 1) ⇔ ( x o  + 2)m + (1 – y) = 0

Vì phương trình nghiệm đúng với mọi giá trị của m nên tất cả các hệ số phải bằng 0.

Suy ra:  x o  + 2 = 0 ⇔  x o  = -2

1 –  y o  = 0 ⇔  y o = 1

Vậy A(-2; 1) là điểm cố định mà họ đường thẳng y = mx + (2m + 1) luôn đi qua với mọi giá trị m.

30 tháng 5 2017

Hàm số bậc nhất

29 tháng 9 2022

???

16 tháng 6 2017

Gọi điểm cố định mà các đường thẳng (d) đều đi qua P( x o ,  y o ).

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phương trình (*) nghiệm đúng với mọi giá trị không âm của k , do đó ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy, với k ≥ 0, các đường thẳng (d) đều đi qua điểm cố định P(1-  3 ;  3  – 1).

NV
15 tháng 12 2020

Giả sử điểm cố định mà (d) luôn đi qua có tọa độ \(M\left(x_0;y_0\right)\)

\(\Rightarrow\) Với mọi m, ta luôn có:

\(y_0=\left(2m+1\right)x_0+m-2\)

\(\Leftrightarrow m\left(2x_0+1\right)+x_0-y_0-2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_0+1=0\\x_0-y_0-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{5}{2}\end{matrix}\right.\)

Vậy với mọi m thì (d) luôn đi qua điểm cố định có tọa độ \(\left(-\dfrac{1}{2};-\dfrac{5}{2}\right)\)

NV
16 tháng 8 2021

Gọi điểm cố định có tọa độ \(\left(x_0;y_0\right)\)

Khi đó với mọi m ta có:

\(y_0=\left(m+5\right)x_0+2m-10\)

\(\Leftrightarrow m\left(x_0+2\right)+5x_0-y_0-10=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+2=0\\5x_0-y_0-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-2\\y_0=-20\end{matrix}\right.\)

\(\Rightarrow\) Với mọi m đồ thị hàm số luôn đi qua điểm cố định có tọa độ \(\left(-2;-20\right)\)