Cho đường tròn (O;R) và dây BC cố định không đi qua tâm. Trên tia đối của tia BC lấy điểm A (A khác B). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) (M và N là các tiếp điểm). Gọi I là trung điểm của BC.1) Chứng minh A; O; M; N; I cùng thuộc một đường tròn và IA là tia phân giác của góc MIN.2) Gọi K là giao điểm của MN và BC. Chứng minh
\(\dfrac{2}{AK}=\dfrac{1}{AB}+\dfrac{1}{AC}\)
3) Đường thẳng qua M và vuông góc với đường thẳng ON cắt (O) tại điểm thứ hai là P. Xác định vị trí của điểm A trên tia đối của tia BC để AMPN là hình bình hành.
Mình cần câu c thôi