K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

Thế muốn giải thích thì liệt kê đau đầu =(

\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7+5}}=\frac{-10}{9}\inℚ\)

\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}=12\inℚ\)

Đây là TH là số hữu tỉ còn lại.....

\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}=8\sqrt{3}\notinℚ\)

\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}=2-\sqrt{7}\notinℚ\)

4 tháng 11 2018

Bài 2 :

Giả sử \(a=\sqrt{3}\)là số hữu tỉ

Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )

Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)

Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)

\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)

=> m có dạng \(3k\)

Thay m vào (*) ta có : \(9k^2=3n^2\)

\(\Leftrightarrow3k^2=n^2\)

\(\Leftrightarrow n=\sqrt{3}k\)

Vì k là số nguyên => n không là số nguyên

=> điều giả sử là sai

=> \(\sqrt{3}\)là số vô tỉ

4 tháng 7 2018

        \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)

\(\Leftrightarrow\sqrt[3]{m^2}=-\frac{b\sqrt[3]{m}+c}{a}\)

        \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)

\(\Leftrightarrow a.m+b\sqrt[3]{m^2}+c\sqrt[3]{m}=0\)

\(\Leftrightarrow a.m+b.\left(-\frac{b\sqrt[3]{m}+c}{a}\right)+c\sqrt[3]{m}=0\)

 \(\Leftrightarrow a^2m+b.\left(-b\sqrt[3]{m}-c\right)+ac\sqrt[3]{m}=0\)

\(\Leftrightarrow a^2m-b^2.\sqrt[3]{m}-bc+ac\sqrt[3]{m}=0\)

\(\Leftrightarrow a^2m-bc=\sqrt[3]{m}\left(b^2-ac\right)\)

\(\Leftrightarrow\frac{a^2m-bc}{\sqrt[3]{m}}=b^2-ac\)

Do \(\frac{a^2m-bc}{\sqrt[3]{m}}\in I\)và \(b^2-ac\in Q\)nên

\(\Rightarrow\hept{\begin{cases}\frac{a^2m-bc}{\sqrt[3]{m}}=0\\b^2-ac=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2m-bc=0\\b^2-ac=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2m=bc\\b^2=ac\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}a^3m=abc\\b^3=abc\end{cases}\Rightarrow a^3m=b^3}\)

Với \(a,b\ne0\) \(\Rightarrow m=1\Rightarrow\sqrt[3]{m}=1\)là số hữu tỉ ( LOẠI )

Với \(a=b=0\Rightarrow c=0\left(TM\right)\)

Vậy a=b=c=0 thỏa mãn đề bài

3 tháng 7 2018

mình mới học lớp 7 thôi

26 tháng 10 2016

\(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}=\frac{\sqrt{x}-2+4}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{\sqrt{x}-2}+\frac{4}{\sqrt{x}-2}=1+\frac{4}{\sqrt{x}-2}\)

Do A nguyên nên \(\frac{4}{\sqrt{x}-2}\) nguyên

\(\Rightarrow\sqrt{x}-2\inƯ\left(4\right)\)

\(\sqrt{x}-2\ge-2\Rightarrow\sqrt{x}-2\in\left\{1;-1;2;-2;4\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{3;1;4;0;6\right\}\)

\(\Rightarrow x\in\left\{9;1;16;0;36\right\}\)

Vậy \(x\in\left\{9;1;16;0;36\right\}\)

26 tháng 10 2016

bn ơi lm thế thì thành x là số nguyên mất rồi, bn xem lại giùm mình nhé