K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2021

Bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\) \(\left(\forall a,b,c>0\right)\)

chứng minh bổ đề: \(\Sigma_{cyc}\left(\dfrac{a^3}{a^3+b^3+c^3}\right)+\dfrac{1}{3}+\dfrac{1}{3}\ge3\sqrt[3]{\left(\Pi_{cyc}\dfrac{a^3}{a^3+b^3+c^3}\right).\dfrac{1}{3}.\dfrac{1}{3}}\)

hoán vị theo a,b,c

ta được: \(3\ge\dfrac{3\left(a+b+c\right)}{\sqrt[3]{9.\left(a^3+b^3+c^3\right)}}\)

mũ 3 hai vế ta có được bất đẳng thức bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\)

Áp dụng bất C-S: 

\(\sqrt{a^3+3b}+\sqrt{b^3+3c}+\sqrt{c^3+3a}\ge\sqrt{\left(1+1+1\right)\left(a^3+b^3+c^3+3a+3b+3c\right)}\)

\(\ge\sqrt{3.\left[3+3\left(a+b+c\right)\right]}=\sqrt{36}=6\)

Dấu "=" xảy ra tại a=b=c=1

27 tháng 10 2021

Sửa đề \(\sqrt{a^2+bc}+\sqrt{b^2+ca}+\sqrt{c^2+ab}\le6\)

\(\sqrt{a^2+3b}=\sqrt{a^2+\left(a+b+c\right)b}=\sqrt{a^2+ab+b^2+bc}\\ =\sqrt{\left(a+b\right)\left(a+c\right)}\le\dfrac{a+b+a+c}{2}=\dfrac{2a+b+c}{2}\)

Cmtt \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{b^2+3c}\le\dfrac{a+2b+c}{2}\\\sqrt{c^2+3a}\le\dfrac{a+b+2c}{2}\end{matrix}\right.\)

Cộng VTV:

\(\Leftrightarrow VT\le\dfrac{2a+b+c+a+2b+c+a+b+2c}{2}\\ \Leftrightarrow VT\le\dfrac{4\left(a+b+c\right)}{2}=2\left(a+b+c\right)=6\)

Dấu \("="\Leftrightarrow a=b=c=1\)

27 tháng 10 2021

em chưa hiểu cách biến đổi của cái này ạ\(\sqrt{a^2+ab+b^2+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

4 tháng 9 2021

Ủa bị lỗi hả:v? undefined

13 tháng 8 2020

\(VP=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)

\(=\frac{6}{\sqrt{\left[\left(a+b+c\right)a+bc\right]\left[\left(a+b+c\right)b+ca\right]\left[\left(a+b+c\right)c+ab\right]}}\)

\(=\frac{6}{\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+1\right)^2}}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

\(VT=\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}\)

\(=\frac{1}{\left(a+b+c\right)a+bc}+\frac{1}{\left(a+b+c\right)b+ac}+\frac{1}{\left(a+b+c\right)c+ab}\)

\(=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

Vậy VT = VP, đẳng thức được chứng minh

NV
7 tháng 5 2020

\(\left(1.a+\sqrt{3}.\sqrt{3}b\right)^2\le\left(1+3\right)\left(a^2+3b^2\right)\Rightarrow\sqrt{a^2+3b^2}\ge\frac{a+3b}{2}\)

\(\Rightarrow VT\ge\frac{a+3b}{2}+\frac{b+3c}{2}+\frac{c+3a}{2}=2\left(a+b+c\right)=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

minh nghi vay

Áp dụng BĐT cô si ta có :

ab+bc+ca≥33√ab.bc.ca=3ab+bc+ca≥3ab.bc.ca3=3

⇒BĐT⇒BĐTcần CMCM3>9a+b+c⇔a+b+c>33>9a+b+c⇔a+b+c>3

Mà a,b,c > 0 => abc > 0

 ⇒a+b+c≥33√abc≥3⇒a+b+c≥3abc3≥3

Dấu "=" xảy ra ⇔\hept{a=b=ca2=b2=c2=1⇔a=b=c=1

5 tháng 6 2021

Cóp vừa thôi:)) huymatacc

10 tháng 9 2017

Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập  springtime ấy

10 tháng 9 2017

Chào bác Thắng