K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

12 tháng 5 2023

Đặt \(P=\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\)

\(P=\dfrac{\left(abc\right)^2}{a^3\left(b+c\right)}+\dfrac{\left(abc\right)^2}{b^3\left(c+a\right)}+\dfrac{\left(abc\right)^2}{c^3\left(a+b\right)}\)

\(P=\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ca\right)^2}{b\left(c+a\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\)

\(P\ge\dfrac{\left(bc+ca+ab\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\) (BĐT B.C.S)

\(=\dfrac{ab+bc+ca}{2}\) \(\ge\dfrac{3\sqrt[3]{abbcca}}{2}=\dfrac{3}{2}\) (do \(abc=1\)).

ĐTXR \(\Leftrightarrow a=b=c=1\)

24 tháng 7 2021

Ta có a3 + b3 = 2(c3 - 8d3

<=> a3 + b3 = 2c3 - 16d3

<=> a3 + b3 + c3 + d3 = 3(c3 - 5d3\(⋮3\)(1) 

Xét hiệu a3 + b3 + c3  + d3 - (a + b + c + d)

= (a3 - a) + (b3 - b) + (c3 - c) + (d3 - d)

= (a - 1)a(a + 1)  + (b  - 1)b(b + 1) + (d - 1)d(d + 1) \(⋮3\) (tổng các tích 3 số nguyên liên tiếp) 

=>  a3 + b3 + c3  + d3 - (a + b + c + d) \(⋮\)3 (2) 

Từ (1) và (2) => a + b + c + d \(⋮3\)

NV
16 tháng 3 2022

Do 5 là số nguyên tố, nên trong 3 nhân tử \(a^3+b^3;b^3+c^3;c^3+a^3\) phải có ít nhất 1 số chia hết cho 5

Không mất tính tổng quát, giả sử \(a^3+b^3⋮5\) \(\Rightarrow a;b\) đều chia hết cho 5 hoặc đều ko chia hết cho 5

Nếu  \(a+b\) ko chia hết cho 5:

- a;b đồng dư khi chia 5 \(\Rightarrow\) \(a^3+b^3\) chia 5 dư lần lượt là 2;3;3;2\(\Rightarrow\) ko chia hết cho 5 (ktm)

- a;b khác số dư khi chia 5, do vai trò của a;b là như nhau và a+b ko chia hết cho 5 nên ta có các trường hợp sau:

+ a chia 5 dư 1: nếu b chia 5 dư 2 \(\Rightarrow A\) chia 5 dư -2 (ktm), nếu b chia 5 dư 3 \(\Rightarrow A\) chia 5 dư -3 (ktm)

+ a chia 5 dư 2, b chia 5 dư 4 \(\Rightarrow A\) chia 5 dư 2 (ktm)

+ a chia 5 dư 3, b chia 5 dư 4 \(\Rightarrow A\) chia 5 dư 3 (ktm)

\(\Rightarrow a+b\) ko chia hết cho 5 thì \(a^2+b^2-ab\) cũng ko chia hết cho 5

\(\Rightarrow a^3+b^3\) ko chia hết cho 5 (mâu thuẫn giả thiết)

Vậy \(a+b⋮5\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮5\)

NV
16 tháng 3 2022

\(A=a^2+b^2-ab\) , ko hiểu sao lại ghi thiếu

AH
Akai Haruma
Giáo viên
31 tháng 7 2023

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$

$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}$

Áp dụng BĐT Cô-si: $a+b+c\geq 3\sqrt[3]{abc}=3$

$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}\geq \frac{(a+b+c).3^5}{27}=9(a+b+c)$
Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

21 tháng 8 2021

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

21 tháng 8 2021

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

27 tháng 2 2017

\(abc=1\Rightarrow\left(abc\right)^2=a^2b^2c^2=1\Rightarrow a^2=\frac{1}{b^2c^2}\Rightarrow\frac{1}{a^3\left(b+c\right)}=\frac{b^2c^2}{a\left(b+c\right)}=\frac{\left(bc\right)^2}{ab+ac}\)

Chứng minh tương tự ta có:  \(\frac{1}{b^3\left(c+a\right)}=\frac{\left(ca\right)^2}{bc+ba};\frac{1}{c^3\left(a+b\right)}=\frac{\left(ab\right)^2}{ca+cb}\)

=> \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\)

Áp dụng bđt Cauchy-Schwarz dạng Engel: \(\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\ge\frac{\left(ab+bc+ca\right)^2}{bc+ca+ab+ca+ab+bc}=\frac{ab+bc+ca}{2}\)

Tiếp tục áp dụng bđt Cauchy với 3 số dương ta được: \(\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3\sqrt[3]{1}}{2}=\frac{3}{2}\)

=> \(\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\ge\frac{ab+bc+ca}{2}\ge\frac{3}{2}\)

27 tháng 2 2017

Dấu "=" xảy ra khi a=b=c=1