cho tam giác ABC vuông tại A, AB=AC. Kẻ AH vuông góc với BC tại H. a) CM: AH=HB=HC b) Vẽ BD vuông góc với đường thẳng đi qua A. Trên tia đối tia AD lấy AE=BD. CM AD=CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=10cm
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
hay AB=AD
c: Xét tứ giác ABED có
H là trung điểm của AE
H là trung điểm của BD
Do đó: ABED là hình bình hành
Suy ra: AB//ED
hay ED\(\perp\)AC
a)
Áp dụng định lý Py-ta-go vào tam giác vuông ABC:
BC2= AB2+AC2= 62+82= 36 + 64= 100
\(\Rightarrow BC=\sqrt{100}=10cm\)
b)
Xét tam giác AHD và tam giác AHB:
AHD=AHB = 90o
AH chung
HD=HB
\(\Rightarrow\)tam giác AHD = tam giác AHB (2 cạnh góc vuông)
\(\Rightarrow\)AB=AD (2 cạnh tương ứng)
c)
Xét tam giác AHB và tam giác EHD:
HA = HE
AHB=EHD (đối đỉnh)
HD=HB
\(\Rightarrow\)tam giác AHB = tam giác EHD (c.g.c)
\(\Rightarrow\)BAH=DEH (2 góc tương ứng)
Ta có:
BAH+HAC = 90o (phụ nhau)
\(\Leftrightarrow\) DEH +HAC =90o
\(\Rightarrow\)tam giác ACE vuông tại C
\(\Rightarrow\)ED vuông góc với AC
d)
Ta có : AH là cạnh góc vuông lớn của tam giác AHD.
DH là cạnh góc vuông bé của tam giác AHD
\(\Rightarrow\)AH > DH (1)
Mà: AE = 2 * AH (2)
BD= 2* DH (3)
\(\Rightarrow\)AE > BD
a,Áp dụng định lí Pytago vào tam giác vuông ABC, ta có:
BC2=AB2+AC2
\(\Rightarrow\) BC2=62+82=36+64=100
\(\Rightarrow\) BC=\(\sqrt{100}\) =10 (cm)
b,Xét 2 tam giác vuông AHB và AHD có: góc BHA=góc DHA(=90 độ ); HB = HD ( gt );HA chung
\(\Rightarrow\) tam giác AHB = tam giác AHD. suy ra AB = AD ( 2 cạnh tương ứng )
c, Xét tam giác BHA và tam giác CHE có: HB=HC(gt);HA=HE (gt);góc BHA= góc CHE (đối đỉnh)
\(\Rightarrow\) tam giác BHA = tam giác CHE ( c.g.c). Suy ra góc ABC = góc ECB ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong nên BA//EC.
Ta có BA//EC mà BA vuông góc với AC nên EC vuông góc vói AC
a, Xét tam giác DAE và tam giác BAC có
DAE = BAC ( đối đỉnh )
AD = AB ( gt)
AE= AC ( gt)
=> tam giác DAE = tam giác BAC
=> BC= DE
b, ta có DAE = BAC = 90 độ ( 2 góc đối đỉnh )
lại có BAD = CAE đối đỉnh
=> BAD=CAE = 360 - (BaC + DAE) tất cả trên 2
<=> BAD= 360 -180 tâts cả trên 2
<=> BAD = 180 trên 2
<=> BAD = 90 độ
=> tam giác BAD vuông lại A
mà AB =AD (gt)
=> BAD vuông cân
=> DBA = BDA = 90 trên 2 = 45 độ
Chứng mình tương tự tam giác CAE vuông cân
=>AEC=ACE= 90 trên 2 = 45 độ
=> DBA=AEC=45 độ
mà chúng ở vị trí sole trong
=> BD // CE