K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 2 2021

\(P=\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)

\(P\le\dfrac{ab}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{bc}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)

\(\Leftrightarrow P\le\dfrac{1}{2}\left(a+b+c\right)=3\)

\(P_{max}=3\) khi \(a=b=c\)

19 tháng 5 2022

Áp dụng bđt \(\dfrac{9}{a+b+c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Khi đó \(\dfrac{9.ab}{a+3b+2c}=ab.\dfrac{9}{\left(a+c\right)+\left(c+b\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{c+b}+\dfrac{a}{2}\)

Tương tự và cộng theo vế suy ra \(9A\le\dfrac{3\left(a+b+c\right)}{2}=9< =>A\le1\)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 2

30 tháng 12 2021

\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)

CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)

\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)

30 tháng 12 2021

Anh ơi! Anh giúp em thêm BĐT ạ! 

https://hoc24.vn/cau-hoi/cho-xyz-0-thoa-man-dfrac1xdfrac1ydfrac1z3-tim-gtln-cua-bieu-thuc-pdfrac1sqrt5x22xy2y2dfrac1sqrt5y22yz2z2dfrac1sqrt5z22xz2x2.4139241594094

NV
9 tháng 8 2021

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}=a^2+b^2+c^2\)

Mặt khác ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=9\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Từ đó suy ra đpcm

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow \frac{abc}{c(a+b)}=\frac{abc}{a(b+c)}=\frac{bca}{b(c+a)}\)

\(\Leftrightarrow c(a+b)=a(b+c)=b(c+a)\)

\(\Leftrightarrow ac+bc=ab+ac=bc+ab\Leftrightarrow ab=bc=ac\)

\(\Rightarrow a=b=c\) (do $a,b,c>0$)

$\Rightarrow M=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1$

6 tháng 8 2021

Bổ đề :\(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)

Áp dụng bất đẳng thức Cô-si ta có:

 \(x+y+z\ge3\sqrt[3]{xyz};\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge3\sqrt[3]{\dfrac{1}{x}.\dfrac{1}{y}.\dfrac{1}{z}}\)

\(\Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\dfrac{1}{x}\dfrac{1}{y}\dfrac{1}{z}}=9\) 

Dấu "=" xảy ra ⇔ x=y=z

Ta có:\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{9}.\dfrac{9}{a+3b+2c}\le\dfrac{ab}{9}.\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)\)

Tương tự ta có:\(\dfrac{bc}{b+3c+2a}\le\dfrac{bc}{9}\left(\dfrac{1}{b+a}+\dfrac{1}{c+a}+\dfrac{1}{2c}\right)\)

                         \(\dfrac{ca}{c+3a+2b}\le\dfrac{ca}{9}.\left(\dfrac{1}{c+b}+\dfrac{1}{a+b}+\dfrac{1}{2a}\right)\)

Cộng vế với vế ta có:

\(A\le\dfrac{1}{9}.\left(\dfrac{ab+bc}{a+c}+\dfrac{cb+ac}{a+b}+\dfrac{ca+ab}{b+c}+\dfrac{a+b+c}{2}\right)\)

\(=\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{9}.\left(6+\dfrac{6}{3}\right)=1\)

Dấu "=" xảy ra ⇔ a=b=c=2

Vậy Max A=1⇔ a=b=c=2

6 tháng 8 2021

bn ơi bn còn cách làm nào khác ko

 

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:

Áp dụng BĐT AM-GM:
\(P=\sum \sqrt{\frac{ab}{c+ab}}=\sum \sqrt{\frac{ab}{c(a+b+c)+ab}}=\sum \sqrt{\frac{ab}{(c+a)(c+b)}}\)

\(\leq \sum \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

Vậy $P_{\max}=\frac{3}{2}$ khi $a=b=c=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
4 tháng 4 2018

Lời giải:

Vì \(a+b+c=6\) nên BĐT cần chứng minh tương đương với:

\(\frac{ab}{2b+c+a+b+c}+\frac{bc}{2c+a+a+b+c}+\frac{ca}{2a+b+a+b+c}\leq 1(*)\)

Thật vậy, áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{ab}{2b+c+a+b+c}=\frac{ab}{(b+c)+(c+a)+2b}\leq \frac{ab}{9}\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2b}\right)\)

Hoàn toàn tương tự:

\(\frac{bc}{2c+a+a+b+c}\leq \frac{bc}{9}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{2c}\right)\)

\(\frac{ca}{2a+b+a+b+c}\leq \frac{ca}{9}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{2a}\right)\)

Cộng các BĐT vừa thu được lại ta có:

\(\text{VT}\leq \frac{1}{9}\left(\frac{ab+ac}{b+c}+\frac{ab+bc}{a+c}+\frac{bc+ca}{a+b}+\frac{a+b+c}{2}\right)\)

\(\Leftrightarrow \text{VT}\leq \frac{1}{9}\left(a+b+c+\frac{a+b+c}{2}\right)=\frac{1}{9}\left(6+\frac{6}{2}\right)=1\)

BĐT \((*)\) hoàn tất, ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c=2\)

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{ab}{6+2b+c}+\frac{bc}{6+2c+a}+\frac{ca}{6+2a+b}=\frac{ab}{a+b+c+2b+c}+\frac{bc}{a+b+c+2c+a}+\frac{ca}{a+b+c+2a+b}\)

\(=\frac{ab}{2b+(a+c)+(b+c)}+\frac{bc}{2c+(a+b)+(a+c)}+\frac{ca}{2a+(b+a)+(b+c)}\)

\(\leq \frac{ab}{9}\left(\frac{1}{2b}+\frac{1}{a+c}+\frac{1}{b+c}\right)+\frac{bc}{9}\left(\frac{1}{2c}+\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{ca}{9}\left(\frac{1}{2a}+\frac{1}{b+a}+\frac{1}{b+c}\right)\)

\(\text{VT}\leq \frac{a+b+c}{18}+\frac{ab+bc}{9(a+c)}+\frac{ab+ac}{9(b+c)}+\frac{bc+ac}{9(a+b)}\)

\(\text{VT}\leq \frac{(a+b+c)}{6}=\frac{6}{6}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=2$

NV
13 tháng 6 2021

\(\sqrt{\dfrac{ab}{c+ab}}=\sqrt{\dfrac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)

Tương tự: \(\sqrt{\dfrac{bc}{a+bc}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\) ; \(\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)\)

Cộng vế với vế:

\(P\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{b}{a+b}+\dfrac{a}{a+b}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

1 tháng 9 2021

Cho a, b, c, d là các chữ số thỏa mãn: ab+ca=da ab-ca=a Tìm giá trị của d.