K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

a^2+b^2+c^2+2ab+2cb+2ac-a^2-b^2-c^2-2abc>2

2ab+2ca+bc-2abc>2

 

15 tháng 2 2016

sao lại từ phần cần chứng minh nhân ra vậy.

Mà bạn làm mình ko hiểu

27 tháng 7 2017

Ta có:

\(a< b+c\)

\(\Leftrightarrow2a< a+b+c=2\)

\(\Leftrightarrow a< 1\)

Tương tự ta cũng có:

\(\hept{\begin{cases}b< 1\\c< 1\end{cases}}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Leftrightarrow-abc+ab+bc+ca-a-b-c+1>0\)

\(\Leftrightarrow abc< \left(ab+bc+ca\right)-1\)

\(\Leftrightarrow2abc< 2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2+2=4-2=2\)

2 tháng 11 2016

Do a,b,c là 3 cạnh của 1 tam giác nên dễ dàng suy ra được a,b,c < 1
Từ đó ta có (1-a)(1-b)(1-c)>0
Suy ra:


Suy ra ĐCCM?

20 tháng 1 2021

Ta có a < b + c; b < c + a; c < a + b nên từ a + b + c = 2 suy ra a, b, c < 1.

BĐT cần cm tương đương:

\(\left(a+b+c\right)^2+2abc< 2\left(ab+bc+ca\right)+2\)

\(\Leftrightarrow abc-\left(ab+bc+ca\right)+1< 0\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)< 0\).

Bất đẳng thức trên luôn đúng do a, b, c < 1.

Vậy ta có đpcm.

 

20 tháng 2 2018

do a,b,c là 3 cạnh của tam giác nên:

c<a+b  => 2c<a+b+c  => 2c<2  => c<1

Tương tự ta cm được a<1; b<1

vì a<1 => 1-a >0

b<1 => 1-b >0

c<1  => 1-c>0

=>   (1-a)(1-b)(1-c)  > 0

=> 1- (a+b+c) +ab+bc+ac-abc >0

=>ab+ac+bc-1>abc  (a+b+c=0, chuyển vế đổi dấu)

=>2ab+2ac+2bc-2>2abc

Vậy a2+b2+c2+2abc < a2+b2+c2+2ab+2ac+2bc-2= (a+b+c)2-2=4-2=2

Vậy => dpcm

26 tháng 1 2021

Từ gt suy ra a < b + c nên 2a < a + b + c = 2

\(\Rightarrow a< 1\).

Chứng minh tương tự: \(b< 1;c< 1\).

Do đó \(\left(a-1\right)\left(b-1\right)\left(c-1\right)< 0\Leftrightarrow abc< ab+bc+ca-1\) (Do a + b + c = 2)

\(\Rightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca-1\right)=\left(a+b+c\right)^2-2=2\) (đpcm).