K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

\(a.\frac{4x-8}{2x^2+1}=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow4\left(x-2\right)=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\)

Vậy nghiệm của phương trình trên là \(2\)

20 tháng 3 2020

\(b.\frac{x^2-x-6}{x-3}=0\left(x\ne3\right)\\\Leftrightarrow x^2-x-6=0\\ \Leftrightarrow x^2+2x-3x-6=0\\\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\\\Leftrightarrow \left(x-3\right)\left(x+2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\left(ktm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)

Vậy nghiệm của phương trình trên là \(-2\)

30 tháng 8 2019

a) \(\left(3x+2\right).\left(x-3\right)-3x.\left(x+\frac{1}{3}\right)\)

\(=3x^2-9x+2x-6-\left(3x^2+x\right)\)

\(=3x^2-9x+2x-6-3x^2-x\)

\(=\left(3x^2-3x^2\right)+\left(-9x+2x-x\right)-6\)

\(=-8x-6.\)

Chúc bạn học tốt!

30 tháng 8 2019

\(B=\left(3x-2\right)^2-\left(x+2\right).\left(x-2\right)\)

\(=\left(3x-2\right)^2-\left(x^2-2^2\right)\)

\(=9x^2-12x+4-x^2+4\)

\(=8x-12x+8\)

\(C=\left(x+4\right)^2-7x.\left(x-2\right)\)

\(=x^2+8x+16-\left(7x^2-14x\right)\)

\(=x^2+8x+16-7x^2+14x\)

\(=-6x^2+22x+16\)

\(D=-4x.\left(2x-7\right)+\left(x+5\right)^2\)

\(=-8x^2+28x+x^2+10x+25\)

\(=-7x^2+38x+25\)

1) Ta có: \(\sqrt{21-x}+1=x\)

\(\Leftrightarrow21-x=\left(x-1\right)^2\)

\(\Leftrightarrow x^2-2x+1-21+x=0\)

\(\Leftrightarrow x^2-3x-20=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-20\right)=9+80=89\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3+\sqrt{89}}{2}\\x_2=\dfrac{3-\sqrt{89}}{2}\end{matrix}\right.\)

30 tháng 7 2021

1)\(\sqrt{21-x}+1=x\)

\(\Leftrightarrow21-x=\left(x-1\right)^2\)

\(\Leftrightarrow21-x=x^2-2x+1\)

\(\Leftrightarrow x^2-x-20=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)

2)\(\sqrt{8-x}+2=x\)

\(\Leftrightarrow8-x=\left(x-2\right)^2\)

\(\Leftrightarrow8-x=x^2-4x+4\)

\(\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)

 

 

6 tháng 10 2023

\(\left(\dfrac{1}{2}-2x\right)\left(3x-\dfrac{9}{4}\right)=0\)

TH1: \(\dfrac{1}{2}-2x=0\)

\(\Rightarrow2x=\dfrac{1}{2}\)

\(\Rightarrow x=\dfrac{1}{2}:2\)

\(\Rightarrow x=\dfrac{1}{4}\)

TH2: \(3x-\dfrac{9}{4}=0\)

\(\Rightarrow3x=\dfrac{9}{4}\)

\(\Rightarrow x=\dfrac{9}{4}:3\)

\(\Rightarrow x=\dfrac{3}{4}\) 

Vậy: .... 

28 tháng 8 2020

Ít thôi -..-

a) ( 3x + 2 )( 2x + 9 )  - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )

<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )

<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4

<=> 12x + 15 = 2x + 5

<=> 12x - 2x = 5 - 15

<=> 10x = -10

<=> x = -1

b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )

<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20

<=> 3x2 - 12x - 2 = 3x2 - 17x + 20

<=> 3x2 - 12x - 3x2 + 17x = 20 + 2

<=> 5x = 22

<=> x = 22/5

c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8

<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8

<=>  x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

<=> 12x + 16 = -8

<=> 12x = -24

<=> x = -2

d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16

<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16

<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16

<=> 8x2 - 9x - 4 = 16

<=> 8x2 - 9x - 4 - 16 = 0

<=> 8x2 - 9x - 20 = 0

( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm

                                                         2 là nghiệm vô tỉ =) )

28 tháng 8 2020

a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)

=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)

=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4

=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)

=> 12x + 15 = 2x + 5

=> 12x + 15  - 2x - 5 = 0

=> 10x + 10 = 0

=> 10x = -10 => x = -1

b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)

=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)

=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20

=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20

=> 3x2 - 12x - 2 = 3x2 - 17x + 20

=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0

=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0

=> 5x - 22 = 0

=> 5x = 22 => x = 22/5

c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8

=> x3 + 6x2 + 12x + 8 - (x3  - 6x2 + 12x - 8) - 12x2 + 12x = -8

=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8

=> 12x + 16 = -8

=> 12x = -24

=> x = -2

Còn bài cuối làm nốt

a: \(3x\left(x-3\right)+4x-12=0\)

=>\(3x\left(x-3\right)+\left(4x-12\right)=0\)

=>\(3x\left(x-3\right)+4\left(x-3\right)=0\)

=>\(\left(x-3\right)\left(3x+4\right)=0\)

=>\(\left[{}\begin{matrix}x-3=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b: Sửa đề:\(\left(x+1\right)\left(x^2-x+1\right)-x^3+2x=17\)

\(\Leftrightarrow x^3+1-x^3+2x=17\)

=>2x+1=17

=>2x=17-1=16

=>\(x=\dfrac{16}{2}=8\)

c: \(\left(x-3\right)\left(x+5\right)+\left(x-1\right)^2-6x^4y^2:3x^2y^2=15x\)

=>\(x^2+2x-15+x^2-2x+1-2x^2=15x\)

=>\(15x=-14\)

=>\(x=-\dfrac{14}{15}\)