Có 2 số nguyên x,y nào mà \(\left(x+y\right).\left(x-y\right)=1002\) không ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét x, y, z cùng chẵn hoặc cùng lẻ thì ta có:
\(\left(x-y\right)^3\)chẵn; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\) chẵn
\(\Rightarrow VT\)là số chẵn còn VP là số lẻ (loại).
Xét trong 3 số x, y, z có 2 số chẵn 1 số lẻ. Không mát tính tổng quát giả sử số lẻ là x.
\(\left(x-y\right)^3\)lẻ; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\)lẻ
\(\Rightarrow\)VT là số chẵn còn VP là số lẻ (loại).
Xét trong 3 số x, y, z có 2 số lẻ 1 số chẵn. Không mát tính tổng quát giả sử số chẵn là x.
\(\left(x-y\right)^3\)lẻ; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\)lẻ
\(\Rightarrow\)VT là số chẵn còn VP là số lẻ (loại).
Vậy PT vô nghiệm.
Ta xét tính chẵn lẻ của x,y,z rồi chứng minh tổng trên luôn chẵn là được
Giá sử x và y có 1 số chẵn , 1 số lẻ thì x+y và x-y đều là số lẻ nên tích (x+y).(x-y) là số lẻ
Vẫy x và y phải cũng chẵn hoặc lẻ khi đó x+y hay x-y đều chẵn nên tích
(x+y)(x-y):4 mà 1002 không chia hết cho 4
Vậy không có số nguyên nào mà (x+y)(x-y)=1002
Mình làm bừa thôi,không biết có đúng không ....
Nếu x ,y cùng tính chẵn lẻ
=> x+y chẵn => x + y chia hết cho 2 (1)
=> x-y chẵn => x- y chia hết cho 2 (2)
Từ (1) và (2) => (x+y)(x-y) chia hết cho 4
=> 1002 chia hết cho 4 ( vô lý, loại )
Nếu x,y khác tính chẵn lẻ
=> x+y lẻ (3)
=> x-y lẻ (4)
Từ (3) và (4) => ( x+y)(x-y) lẻ
Mà 1002 chẵn ( vô lý, loại )
Vậy không có 2 số nguyên x,y nào thỏa mãn đề bài
Đáp án là: Có vô số cặp số nguyên dương \(\left(x,y\right)\) nhưng với điều kiện là:
\(\orbr{\begin{cases}y=2x\\y=3x\end{cases}}\) và \(y\text{}\text{ }⋮\text{ }3402\text{ }\)
Ví dụ như \(\left(x,y\right)=\left(1134;3402\right),\left(1701;3402\right),\left(2268;6804\right),\left(3402;6804\right),...\)
Nhưng cách trình bày thì mình đang nghĩ.
\(\frac{x^2+y^2}{x+y}\inƯ\left(2835\right)\). Xin lỗi, ghi nhầm đề.
1: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m-1}\ne\dfrac{1}{-1}\ne-1\)
=>\(\dfrac{m+m-1}{m-1}\ne0\)
=>\(\dfrac{2m-1}{m-1}\ne0\)
=>\(m\notin\left\{\dfrac{1}{2};1\right\}\)(1)
\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}mx+\left(m-1\right)x=3+7\\mx+y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(2m-1\right)=10\\mx+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=3-mx=3-\dfrac{10m}{2m-1}=\dfrac{6m-3-10m}{2m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=\dfrac{-4m-3}{2m-1}\end{matrix}\right.\)
Để x và y trái dấu thì x*y<0
=>\(\dfrac{10}{2m-1}\cdot\dfrac{-4m-3}{2m-1}< 0\)
=>\(\dfrac{10\left(4m+3\right)}{\left(2m-1\right)^2}>0\)
=>4m+3>0
=>m>-3/4
Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m>-\dfrac{3}{4}\\m\notin\left\{\dfrac{1}{2};1\right\}\end{matrix}\right.\)
2: Để x,y là số nguyên thì \(\left\{{}\begin{matrix}10⋮2m-1\\-4m-3⋮2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\\-4m+2-5⋮2m-1\end{matrix}\right.\)
=>\(2m-1\in\left\{1;-1;5;-5\right\}\)
=>\(2m\in\left\{2;0;6;-4\right\}\)
=>\(m\in\left\{1;0;3;-2\right\}\)
Kết hợp (1), ta được: \(m\in\left\{0;3;-2\right\}\)
Đáp án D đúng
\(y=\left\{{}\begin{matrix}x-1\left(x\ge1\right)\\1-x\left(x\le1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y'\left(1^+\right)=1\\y'\left(1^-\right)=-1\end{matrix}\right.\)
\(y'\left(1^+\right)\ne y'\left(1^-\right)\) nên hàm ko có đạo hàm tại \(x=1\)
a) \(\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+xy=7\\x^2+y^2+x+y+xy=17\end{cases}}\)
Dat \(\hept{\begin{cases}xy=P\\x+y=S\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}S+P=7\\S^2+S-P=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+S-\left(7-S\right)=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+2S=24\end{cases}}\)
\(\hept{\begin{cases}S=-6\\P=13\\S=4;P=3\end{cases}}\)
b)
+)nếu x,y cùng tính chẵn lẻ
=>x+y chẵn =>x+y chia hết cho 2
x-y chẵn=>x-y chia hết cho 2
do đó (x+y)(x-y) chia hết cho 2.2=4
=>1002 chia hết cho 4,mà 1002 ko chia hết cho 4
=>x;y ko tồn tại
+)nếu x;y khác tính chẵn lẻ
=>x+y lẻ và x-y lẻ
=>(x+y)(x-y) lẻ,mà 1002 chẵn
=>x;y ko tồn tại
vậy ko tồn tại cặp số nguyên (x;y) thỏa mãn đề bài
không bn nhé