K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

+)nếu x,y cùng tính chẵn lẻ

=>x+y chẵn =>x+y chia hết cho 2

x-y chẵn=>x-y chia hết cho 2

do đó (x+y)(x-y) chia hết cho 2.2=4

=>1002 chia hết cho 4,mà 1002 ko chia hết cho 4

=>x;y ko tồn tại

+)nếu x;y khác tính chẵn lẻ

=>x+y lẻ và x-y lẻ

=>(x+y)(x-y) lẻ,mà 1002 chẵn

=>x;y ko tồn tại

vậy ko tồn tại cặp số nguyên (x;y) thỏa mãn đề bài

14 tháng 2 2016

không bn nhé

22 tháng 11 2017

Xét x, y, z cùng chẵn hoặc cùng lẻ thì ta có:

\(\left(x-y\right)^3\)chẵn; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\) chẵn

\(\Rightarrow VT\)là số chẵn còn VP là số lẻ (loại).

Xét trong 3 số x, y, z có 2 số chẵn 1 số lẻ. Không mát tính tổng quát giả sử số lẻ là x.

\(\left(x-y\right)^3\)lẻ; ​​\(3\left(y-z\right)^2\)chẵn; \(5|x-z|\)lẻ

\(\Rightarrow\)VT là số chẵn còn VP là số lẻ (loại).

Xét trong 3 số x, y, z có 2 số lẻ 1 số chẵn. Không mát tính tổng quát giả sử số chẵn là x.

\(\left(x-y\right)^3\)lẻ; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\)lẻ

\(\Rightarrow\)VT là số chẵn còn VP là số lẻ (loại).

Vậy PT vô nghiệm.

21 tháng 11 2017

Ta xét tính chẵn lẻ của x,y,z rồi chứng minh tổng trên luôn chẵn là được

13 tháng 2 2016

Giá sử x và y có 1 số chẵn , 1 số lẻ thì x+y và x-y đều là số lẻ nên tích (x+y).(x-y) là số lẻ

Vẫy x và y phải cũng chẵn hoặc lẻ khi đó x+y hay x-y đều chẵn nên tích 

(x+y)(x-y):4 mà 1002 không chia hết cho 4

Vậy không có số nguyên nào mà (x+y)(x-y)=1002

Mình làm bừa thôi,không biết có đúng không ....

7 tháng 2 2016

Nếu x ,y cùng tính chẵn lẻ

=> x+y chẵn => x + y chia hết cho 2 (1)

=> x-y chẵn => x- y chia hết cho 2 (2)

Từ (1) và (2) => (x+y)(x-y) chia hết cho 4 

=> 1002 chia hết cho 4 ( vô lý, loại )

Nếu x,y khác tính chẵn lẻ

=> x+y lẻ (3)

=> x-y lẻ (4)

Từ (3) và (4) => ( x+y)(x-y) lẻ

Mà 1002 chẵn ( vô lý, loại )

Vậy không có 2 số nguyên x,y nào thỏa mãn đề bài

7 tháng 2 2016

nnnnnnnnnooooooooo

20 tháng 3 2020

Đáp án là: Có vô số cặp số nguyên dương \(\left(x,y\right)\) nhưng với điều kiện là:

\(\orbr{\begin{cases}y=2x\\y=3x\end{cases}}\) và \(y\text{​​}\text{ }⋮\text{ }3402\text{ }\)

Ví dụ như \(\left(x,y\right)=\left(1134;3402\right),\left(1701;3402\right),\left(2268;6804\right),\left(3402;6804\right),...\)

Nhưng cách trình bày thì mình đang nghĩ.

22 tháng 3 2020

\(\frac{x^2+y^2}{x+y}\inƯ\left(2835\right)\). Xin lỗi, ghi nhầm đề.

1: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m-1}\ne\dfrac{1}{-1}\ne-1\)

=>\(\dfrac{m+m-1}{m-1}\ne0\)

=>\(\dfrac{2m-1}{m-1}\ne0\)

=>\(m\notin\left\{\dfrac{1}{2};1\right\}\)(1)

\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}mx+\left(m-1\right)x=3+7\\mx+y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(2m-1\right)=10\\mx+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=3-mx=3-\dfrac{10m}{2m-1}=\dfrac{6m-3-10m}{2m-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=\dfrac{-4m-3}{2m-1}\end{matrix}\right.\)

Để x và y trái dấu thì x*y<0

=>\(\dfrac{10}{2m-1}\cdot\dfrac{-4m-3}{2m-1}< 0\)

=>\(\dfrac{10\left(4m+3\right)}{\left(2m-1\right)^2}>0\)

=>4m+3>0

=>m>-3/4

Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m>-\dfrac{3}{4}\\m\notin\left\{\dfrac{1}{2};1\right\}\end{matrix}\right.\)

2: Để x,y là số nguyên thì \(\left\{{}\begin{matrix}10⋮2m-1\\-4m-3⋮2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\\-4m+2-5⋮2m-1\end{matrix}\right.\)

=>\(2m-1\in\left\{1;-1;5;-5\right\}\)

=>\(2m\in\left\{2;0;6;-4\right\}\)

=>\(m\in\left\{1;0;3;-2\right\}\)

Kết hợp (1), ta được: \(m\in\left\{0;3;-2\right\}\)

NV
22 tháng 4 2021

Đáp án D đúng

\(y=\left\{{}\begin{matrix}x-1\left(x\ge1\right)\\1-x\left(x\le1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y'\left(1^+\right)=1\\y'\left(1^-\right)=-1\end{matrix}\right.\)

\(y'\left(1^+\right)\ne y'\left(1^-\right)\) nên hàm ko có đạo hàm tại \(x=1\)

18 tháng 1 2022

a) \(\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+xy=7\\x^2+y^2+x+y+xy=17\end{cases}}\)

Dat \(\hept{\begin{cases}xy=P\\x+y=S\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}S+P=7\\S^2+S-P=17\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+S-\left(7-S\right)=17\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+2S=24\end{cases}}\)

\(\hept{\begin{cases}S=-6\\P=13\\S=4;P=3\end{cases}}\)

b)