Phân tích đa thức thàNH NHÂN TỬ
x^3 -2x^2 +x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3 – 2x2 + x
= x.x2 – x.2x + x (Xuất hiện nhân tử chung là x)
= x(x2 – 2x + 1) (Xuất hiện hằng đẳng thức (2))
= x(x – 1)2
\(x^3+2x^2+x\)
\(=x\left(x^2+2x+1\right)\)
\(=x\left(x+1\right)^2\)
x3 – 2x2 + x – xy2
(Có nhân tử chung x)
= x(x2 – 2x + 1 – y2)
(Có x2 – 2x + 1 là hằng đẳng thức).
= x[(x – 1)2 – y2]
(Xuất hiện hằng đẳng thức (3))
= x(x – 1 + y)(x – 1 – y)
\(Sửa:x^3+y^3+2x^2+2xy\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+2x\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2+2x\right)\)
a, \(x^2\) + 4\(x\) - y2 + 4
= (\(x^2\) + 4\(x\) + 4) - y2
= (\(x\) + 2)2 - y2
= (\(x\) + 2 - y)(\(x\) + 2 + y)
b, 2\(x^2\) - 18
= 2.(\(x^2\) -9)
= 2.(\(x\) -3).(\(x\) + 3)
\(=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
x^3 -2x^2 +x
=𝑥 ( 𝑥2 − 2 𝑥 + 1 )
=x(x-1)2