K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

thằng tó này hay đăng linh tinh thế lắm. ko trả lời thì cút

14 tháng 2 2016

moi hok lop 6

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1
31 tháng 12 2017

Ta có: f(x) + h(x) = g(x)

Suy ra: h(x) = g(x) – f(x) = (x4 – x3 + x2 + 5) – (x4 – 3x2 + x – 1)

            = x4 – x3 + x2 + 5 – x4 + 3x2 – x + 1

            = ( x4 – x4) – x3 + (x2 + 3x2 ) – x + (5+ 1)

            = -x3 + 4x2 – x + 6

25 tháng 12 2017

Ta có: f(x) – h(x) = g(x)

Suy ra: h(x) = f(x) – g(x) = (x4 – 3x2 + x – 1) – (x4 – x3 + x2 + 5)

            = x4 – 3x2 + x – 1 – x4 + x3 – x2 – 5

            = (x4 – x4) + x3 – (3x2 + x2) + x - (1+ 5)

            = x3 – 4x2 + x – 6

a: f(x)=3x^4+2x^3+6x^2-x+2

g(x)=-3x^4-2x^3-5x^2+x-6

b: H(x)=f(x)+g(x)

=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6

=x^2-4

f(x)-g(x)

=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6

=6x^4+4x^3+11x^2-2x+8

c: H(x)=0

=>x^2-4=0

=>x=2 hoặc x=-2

NV
17 tháng 4 2022

\(F\left(x\right)=3x^4+2x^3+6x^2-x+2\)

\(G\left(x\right)=-3x^4-2x^3-5x^2+x-6\)

17 tháng 4 2022

F(x)=-x+2+5x2+2x4+2x3+x2+x4

F(x)= ( 5x2+x2) + ( 2x4 +x4)  +2x3-x+2

F (x) = 6x2 + 3x4 +2x3-x+2

 

G(x) = -x2+x3+x-6-3x3-4x2-3x4

G (x) = ( -x2 -4x2) + ( x3 -3x3) -3x4 +x-6

G (x) =  -5x2 - 2x3 -3x4 +x-6

10 tháng 4 2020

dsssws

a: \(F\left(x\right)=x^5-3x^2+x^3-x^2-2x+5\)

\(=x^5+x^3-4x^2-2x+5\)

\(G\left(x\right)=x^5-x^4+x^2-3x+x^2+1\)

\(=x^5-x^4+2x^2-3x+1\)

b: Ta có: \(H\left(x\right)=F\left(x\right)+G\left(x\right)\)

\(=x^5+x^3-4x^2-2x+5+x^5-x^4+2x^2-3x+1\)

\(=2x^5-x^4+x^3-2x^2-5x+6\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

a: f(x)=3x^4+2x^3+6x^2-x+2

g(x)=-3x^4-2x^3-5x^2+x-6

f(x)+g(x)

=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6

=x^2-4

f(x)-g(x)

=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6

=6x^4+4x^3+11x^2-2x+8

14 tháng 9 2021

-1 chắc thế