K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

ABCDEMI

Từ D kẻ DI // AE

Vì ΔΔABC cân tại A nên BˆB^ = ACBˆACB^ (1)

Vì DI // AE => ACBˆACB^ = DIBˆDIB^ (đồng vị ) (2)

Từ (1) và (2) => BˆB^ = DIBˆDIB^

Trong ΔΔDIB có : BˆB^ = DIBˆDIB^ => ΔΔDIB cân tại D

=> DB = DI mà DB = CE (gt)

=> DI = CE

Vì DI // AE => MDIˆMDI^ = MECˆMEC^(so le trong )

và DIMˆDIM^ = MCEˆMCE^ ( so le trong )

Xét ΔΔDIM và ΔΔECM có :

MDIˆMDI^ = MECˆMEC^ (chứng minh trên )

DI = CE (chứng minh trên )DIMˆDIM^ = MCEˆMCE^(chứng minh trên )=> ΔΔDIM = ΔΔECM (g-c-g)=> DM = ME ( cặp cạnh tương ứng )=> ĐPCM
2 tháng 3 2018

đăng từ năm ngoái năm nay moi trả lời


 

28 tháng 8 2023

A B C E K H D M

a/

Ta có

\(\widehat{B}=\widehat{C}\) (góc ở đáy tg cân ABC)

EK//AB \(\Rightarrow\widehat{EKC}=\widehat{B}\) (góc đồng vị)

\(\Rightarrow\widehat{EKC}=\widehat{C}\) => tg EKC cân tại E => CE=EK

Mà AD=CE 

=> AD=EK (1)

Ta có

EK//AB => EK//AD (2)

Từ (1) và (2) => ADKE là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)

=> MA=MK; MD=ME (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

b/

Ta có \(H\in\left(M;MK\right)\) => MH=MK

Mà MK=MA (cmt) 

=> MH=MK=MA

=> tg MHK cân tại M \(\Rightarrow\widehat{MHK}=\widehat{MKH}\)

\(\widehat{HMK}+\widehat{MHK}+\widehat{MKH}=\widehat{HMK}+2\widehat{MHK}=180^o\)  (tổng các góc trong của 1 tg = 180 độ)

MH=MK=MA (cmt) => tg MAH cân tại M

\(\Rightarrow\widehat{MAH}=\widehat{MHA}\)

\(\widehat{HMK}=\widehat{MAH}+\widehat{MHA}\) (trong tg góc ngoài bằng tổng 2 góc trong không kề với nó)

\(\Rightarrow\widehat{HMK}=2\widehat{MHA}\)

Từ \(\widehat{HMK}+2\widehat{MHK}=180^o\Rightarrow2\widehat{MHA}+2\widehat{MHK}=180^o\)

\(\Rightarrow\widehat{MHA}+\widehat{MHK}=\widehat{AHK}=90^o\Rightarrow AH\perp BC\)

Xét tg vuông ABH và tg vuông ACH có

AH chung

AB=AC (cạnh bên tg cân ABC)

=> tg AHB = tg AHC (Hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau)

=> HB=HC

 

28 tháng 8 2023

Em cảm ơn ạ

 

24 tháng 1 2021

undefined

\(a,\text{Do }\Delta ABC\text{ cân tại A}\Rightarrow AB=AC\)

\(\text{Xét }\Delta ABD\text{ và }\Delta ACE\text{ có:}\)

\(AB=AC\left(cmt\right)\left(1\right)\)

\(\widehat{A}\text{ chung}\left(2\right)\)

\(AD=AE\left(gt\right)\left(3\right)\)

\(\text{Từ (1),(2) và (3)}\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\left(\text{2 góc tương ứng}\right)\)

\(\text{Vậy }\widehat{ABD}=\widehat{ACE}\)

\(b,+\text{)}\widehat{ABD}=\widehat{ACE}\left(\text{câu a}\right)\text{ hay }\widehat{EBI}=\widehat{DCI}\)

\(+\text{)}\text{Ta có: }AE+BE=AB,AD+CD=AC\)

\(\text{Mà }AE=AD\left(\text{câu a}\right),AB=AC\left(\text{câu a}\right)\)

\(\Rightarrow BE=CD\)

\(+\text{)Xét }\Delta EBI\text{ có:}\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(4\right)\)

\(\text{Xét }\Delta DCI\text{ có:}\widehat{DCI}+\widehat{CID}+\widehat{IDC}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(5\right)\)

\(\text{Từ (4) và (5)}\Rightarrow\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=\widehat{DCI}+\widehat{CID}+\widehat{IDC}\)

\(\text{Mà }\widehat{EBI}=\widehat{DCI}\left(cmt\right),\widehat{BIE}=\widehat{CID}\left(\text{đối đỉnh}\right)\)

\(\Rightarrow\widehat{IEB}=\widehat{IDC}\)

\(\text{Xét }\Delta EBI\text{ và }\Delta DCI\text{ có:}\)

\(\widehat{IEB}=\widehat{IDC}\left(cmt\right)\left(6\right)\)

\(BE=CD\left(cmt\right)\left(7\right)\)

\(\widehat{EBI}=\widehat{DCI}\left(cmt\right)\left(8\right)\)

\(\text{Từ (6),(7) và (8)}\Rightarrow\Delta EBI=\Delta DCI\left(g.c.g\right)\)

\(\Rightarrow BI=CI\left(\text{2 cạnh tương ứng}\right)\)

\(\Rightarrow\Delta IBC\text{ cân tại I}\)

\(\text{Vậy }\Delta IBC\text{ là tam giác cân}\)

\(c,+\text{)Do M là trung điểm của BC}\left(gt\right)\Rightarrow BM=CM\)

\(\)\(\text{Xét }\Delta ABM\text{ và }\Delta ACM\text{ có:}\)

\(AB=AC\left(\text{câu a}\right)\left(9\right)\)

\(AM\text{ chung}\left(10\right)\)

\(BM=CM\left(cmt\right)\left(11\right)\)

\(\text{Từ (9),(10) và (11)}\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\left(\text{2 góc tương ứng}\right)\)

\(\Rightarrow AM\text{ là tia phân giác }\widehat{BAC}\)

\(+\text{)}\Delta EBI=\Delta DCI\left(\text{câu b}\right)\)

\(\Rightarrow EI=DI\left(\text{2 cạnh tương ứng}\right)\)

\(\text{Xét }\Delta EAI\text{ và }\Delta DAI\text{ có:}\)

\(EI=DI\left(cmt\right)\left(12\right)\)

\(AI\text{ chung}\left(13\right)\)

\(AE=AD\left(gt\right)\left(14\right)\)

\(\text{Từ (12),(13) và (14)}\Rightarrow\Delta EAI=\Delta DAI\left(c.c.c\right)\)

\(\Rightarrow\widehat{EAI}=\widehat{DAI}\left(\text{2 góc tương ứng}\right)\)

\(\Rightarrow AI\text{ là tia phân giác }\widehat{EAD}\)

\(\text{Hay }AI\text{ là tia phân giác }\widehat{BAC}\left(\text{do E}\in AB,D\in AC\right)\left(15\right)\)

\(\text{Mà }AM\text{ là tia phân giác }\widehat{BAC}\left(cmt\right)\left(16\right)\)

\(\text{Từ (15) và (16)}\Rightarrow A,I.M\text{ thẳng hàng}\left(đpcm\right)\)

A B C I E D

a, Xét tam giác ADB và tam giác AEC có :

AE = AD ( gt )

\(\widehat{A}\) chung

AB = AC ( gt )

=> \(\Delta ADB=\Delta AEC\left(c-g-c\right)\)

b, Do \(\Delta ADB=\Delta AEC\) ( câu a, )

=> \(\widehat{ABD}=\widehat{ACE}\) ( 2 góc tương ứng )

BD nằm giữa 2 tia EB và EC 

=> \(\widehat{EBD}+\widehat{CBD}=\widehat{B}\)

\(\Rightarrow\widehat{CBD}=\widehat{B}-\widehat{EBD}\) ( 1 )

CE nằm giữa 2 tia CD và CB 

\(\Rightarrow\widehat{BCE}+\widehat{DCE}=\widehat{C}\)

\(\Rightarrow\widehat{BCE}=\widehat{C}-\widehat{DCE}\) ( 2 )

Từ ( 1 ) và ( 2 ) 

=> \(\widehat{CBD}=\widehat{BCE}\) hay \(\widehat{IBC}=\widehat{ICB}\)

Xét tam giác IBC có 

\(\widehat{IBC}=\widehat{ICB}\)

=> tam giác IBC cân tại I

c, Xét tam giác AED có :

AE = AD ( gt )

=> Tam giác AED cân tại A

=> \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)( 3 )

Tam giác ABC cân tại A 

=> \(\widehat{B}=\dfrac{180^0-\widehat{A}}{2}\) ( 4 )

Từ ( 3 ) , ( 4) => \(\widehat{AED}=\widehat{B}\)

Đường thẳng AB bị 2 đường thẳng ED và BC cắt tạo thành cặp góc đồng vị bằng nhau \(\widehat{AED}=\widehat{B}\)

=> ED // BC ( đpcm)