chứng minh rằng 2 [x] bằng 2 [x] hoặc 2 [x] +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
Xét hiệu $(x+1)^2-4x^2=(x+1)^2-(2x)^2=(x+1-2x)(x+1+2x)$
$=(1-x)(3x+1)$
Do $x\in (0;1)$ nên $1-x>0; 3x+1>0$
$\Rightarrow (x+1)^2-4x^2>0\Rightarrow (x+1)^2> 4x^2$
2/
Xét hiệu:
$(1+x+y)^2-4(x^2+y^2)=x^2+y^2+1+2x+2y+2xy-4x^2-4y^2$
$=1+2x+2y+2xy-3x^2-3y^2$
$=2x(1-x)+2y(1-y)+1+2xy-x^2-y^2$
Vì $x,y\in (0;1)$ nên:
$2x(1-x)>0$
$2y(1-y)>0$
$(x-1)(y-1)>0\Rightarrow xy+1> x+y=x.1+y.1> x^2+y^2$
$\Rightarrow 1+xy-x^2-y^2>0$
$\Rightarrow 1+2xy-x^2-y^2>0$
Suy ra: $2x(1-x)+2y(1-y)+1+2xy-x^2-y^2>0$
$\Rightarrow (1+x+y)^2> 4(x^2+y^2)$
+ Nếu \(0\le x-\left[x\right]<\frac{1}{2}\) thì \(0\le2x-2\left[x\right]<1\) nên \(\left[2x\right]=2\left[x\right]\)
+ Nếu\(\frac{1}{2}\le x-\left[x\right]<1\) thì \(1\le2x-2\left[x\right]<2\) \(\Rightarrow0\le2x-\left\{2\left[x\right]+1\right\}<1\)
\(\Rightarrow\left[2x\right]=2\left[x\right]+1\)
mk là fan cuồng Khải Ca
Chắc bài này khó và cần gấp lắm nhỉ , thì bạn mõi hỏi bao nhiêu lần như vậy ,Nhưng bài này ở lớp 6 mình chưa học.
mình ko cần gấp là vì mới nảy mình ghi sai đề
mình hỏi dùm Nguyễn Minh Tâm
mk ko bít làm
mà bài này ko phải của lớp 6 mà của lớp 9
duyệt đi
Chắc bạn học nâng cao chứ lớp 6 mình chưa học dạng này đâu , thông cảm nhé