Cho tg ABC cân tại A. Điểm DG cạnh AB, điểm EG cạnh AC sao cgi AD = AE. Gọi K là giao điểm của BE và CD. CMR:
A) BE=CD
B) TG KBD = TG KCE
C) AK phân giác góc A
D) TG KBC LÀ TG CÂN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{MDB}=\widehat{MEC}\)
Xét ΔMDB và ΔMEC có
\(\widehat{MDB}=\widehat{MEC}\)
BD=CE
\(\widehat{MBD}=\widehat{MCE}\)
Do đó: ΔMDB=ΔMEC
c: ta có: ΔMDB=ΔMEC
nên MB=MC
Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
Suy ra: \(\widehat{BAM}=\widehat{CAM}\)
hay AM là tia phân giác của góc BAC
Tự kẻ hình nha !!!
a)Tam giác ABC cân tại A =>AB=AC;góc B= góc C
D thuộc AB => BD+AD= AB
C thuộc AC =>CE + EA = AC
Mà AB=AC nên AD=EA
Xét tam giác AEB và tam giác ADC:
AD=EA( cmt)
AB=AC(cmt)
góc A: góc chung
=>tam giác AEB = tam giác ADC (c.g.c)
=>BE=CD(2 cạnh tương ứng)
b)theo a) ta có tam giác AEB=tam giác ADC=>góc ABE= góc ACD( 2 góc tương ứng)
c)ta có góc B= góc C và góc ABE = góc ACD
Mà góc ABE + góc EBC = goc B
Góc ACD +góc DCB= góc C =>góc EBC = góc DCB
Tam giác KBC có: góc EBC = góc DCB =>tam giác KBC là tam giác cân tại K
* nhớ k cho mk nhé!!!
hướng dẫn:
a) chứng minh tam giác ABE = tam giác ACD (c.g.c) (1)
** câu này dễ rồi nhé, A^ chung, AB = AC, AD = AE**
=> BE = CD
b) (1) => ABE^ = ACD^
c) Dễ thấy BD = CE
từ đó dễ chứng minh tam giác BDC = tam giác CEB (c.c.c)
=> BCD^ = EBC^ => BCK^ = CBK^ => tam giác KBC cân
hướng dẫn:
a) chứng minh tam giác ABE = tam giác ACD (c.g.c) (1)
** câu này dễ rồi nhé, A^ chung, AB = AC, AD = AE**
=> BE = CD
b) (1) => ABE^ = ACD^
c) Dễ thấy BD = CE
từ đó dễ chứng minh tam giác BDC = tam giác CEB (c.c.c)
=> BCD^ = EBC^ => BCK^ = CBK^ => tam giác KBC cân
a) Vì tg ABC là tg cân nên AB = AC mà AD = AE => AB – AD = AC – AE
=> BD = CE => ĐPCM
Xin lỗi mình chỉ giải đc phần a thôi
a: Xet ΔAEB và ΔADC có
AE=AD
góc A chung
AB=AC
=>ΔAEB=ΔADC
=>BE=CD
b: Xet ΔKDB và ΔKEC có
góc KDB=góc KEC
DB=EC
góc KBD=góc KCE
=>ΔKBD=ΔKCE
c: Xét ΔABK và ΔACK có
AB=AC
BK=CK
AK chung
=>ΔABK=ΔACK
=>góc BAK=góc CAK
=>AK là phân giác của góc BAC
d: ΔABC cân tại A
mà AI là phân giác
nên AI vuông góc BC
a: ΔABC vuông tại A
=>AB^2+AC^2=BC^2
=>BC^2=15^2+20^2=625
=>BC=25cm
Xét ΔABC có AD là phân giác
nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos45=\dfrac{2\cdot15\cdot20}{15+20}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{60\sqrt{2}}{7}\)
b: ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>AH*25=15*20=300
=>AH=12cm
ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
=>BH=AB^2/BC=15^2/25=9cm
CH=25-9=16cm
c: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc ABD=góc DBC
nên góc AID=góc ADI
=>ΔADI cân tại A