K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=20^2-12^2=256\)

hay AC=16(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7.2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12.8\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=AB^2-HB^2=12^2-7.2^2=92.16\)

hay AH=9,6(cm)

Vậy: AC=16cm; BH=7,2cm; CH=12,8cm; AH=9,6cm

22 tháng 2 2021

sai bets

 

17 tháng 1 2016

*Bạn tự vẽ hình nhé!

Áp dụng đ/lí Pi-ta-go trong tam giác ABC vuông tại A có:

BC2 = AB2 + AC2

hay BC2 = 202 + 152

=> BC2 = 625 = 252

=> BC = 25 (cm)

Áp dụng đ/lí Pi-ta-go trong tam giác AHB vuông tại H có:

AB2 = AH2 + HB2

=> BH2 = AB2 - AH2

=> BH2 = 202 - 122

=> BH2 = 256 = 162

=> BH = 16 (cm)

Mà H thuộc BC nên H nằm giữa BC

=> BH + HC = BC

=> 16 + HC = 25

=> HC = 25 - 16

=> HC = 9 (cm)

Vậy BC = 25 cm; BH = 16 cm; CH = 9 cm.

17 tháng 1 2016

mọi người giúp mk nha

 

30 tháng 12 2017

Áp dụng định lí Pytago vào tam giác ABC ta có:

B C 2 = A B 2 + A C 2 suy ra: A B 2 = B C 2 - A C 2 = 20 2 - 12 2 = 256

Nên AB = 16cm

* Xét tam giác AHB và tam giác CAB có:

Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Suy ra: Δ AHB và CAB đồng dạng ( g.g) .

Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án D

2 tháng 3 2018

Vì AHC vuông

=> AC^2 = AH^2 + HC^2 ( định lý pytago đảo )

=> AC^2 = 144 + 25

=> AC^2 = 169 

=> AC = 13

2 tháng 3 2018

Áp dụng định lí Py-ta-go vào tam giác ABH ta được:

 \(AB^2=AH^2+BH^2\)

Mà AB=20cm; AH=12cm

\(\Rightarrow20^2=12^2+BH^2\)

\(\Rightarrow400=144+BH^2\)

\(\Rightarrow BH^2=400-144\)

\(\Rightarrow BH^2=256\)

\(\Rightarrow BH=16\)(do BH >0) (cm)

Có BH+HC=BC

Mà BH=16cm;HC=5cm

=> BC=16+5=21(cm)

Vậy BC=21cm

k cho mình nha

7 tháng 2 2017

tam giác AHB vuông tại H ,THEO ĐỊNH LÝ PYTA GO TA CÓ

AB^2=AH^2+BH^2=>AB^2=169=>AB=13 CM

TAM GIÁC AHC VUÔNG TẠI H,THEO ĐỊNH LÝ PYTA GO TA CÓ

HC^2+AH^2=AC^2=>HC^2=AC^2-AH^2=>HC^2=256=>HC=16CM

VÌ H NẰM GIỮA BC => BC=BH+HC=21 CM

=>CHU VI TAM GIÁC ABC LÀ

AB+AC+BC=13+21+20=54 CM

27 tháng 10 2021

b: \(AN\cdot AC=AH^2\)

\(AC^2-HC^2=AH^2\)

Do đó: \(AN\cdot AC=AC^2-HC^2\)

27 tháng 10 2021

mình cần phần d

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2+12^2=20^2\)

=>\(AC^2=400-144=256\)

=>\(AC=\sqrt{256}=16\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

=>\(AH\cdot20=12\cdot16=192\)

=>AH=9,6(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{12^2}{20}=7,2\left(cm\right)\\CH=\dfrac{16^2}{20}=12,8\left(cm\right)\end{matrix}\right.\)

b: XétΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{C}\simeq37^0\)

ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}=90^0-37^0=53^0\)

c: \(AB\cdot cosB+AC\cdot cosC\)

\(=AB\cdot\dfrac{AB}{BC}+AC\cdot\dfrac{AC}{BC}\)

\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)