Cho tam giác ABC cân tại A ( AB > BC) có M, N lần lượt là trung điểm của AB, AC
a) C/m: MN//BC; tứ giác BMNC là hình thang cân
b) BN cắt CM tại O. Trên tia CM lấy điểm D sao cho O là trung điểm của CD. Trên tia BN lấy điểm
E sao cho O la trung điểm của BE. C/m: OB = OC; tứ giác BDEC là hình chữ nhật.
c) C/m: tứ giác AEOD là hình thoi
d) Gọi H là trung điểm của BC, K là hình chiếu của H lên OC. C/m: đường trung tuyến OI của tam
giác OHK ( I thuộc HK) vuông góc với BK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Tam giác $ABC$ cân tại $A$ nên:
$\widehat{ABC}=\frac{180^0-\widehat{A}}{2}$
$M,N$ là trung điểm của $AB,AC$ mà $AB=AC$ nên $AM=AN$
$\Rightarrow \triangle AMN$ cân tại $A$
$\Rightarrow \widehat{AMN}=\frac{180^0-\widehat{A}}{2}$
Do đó: $\widehat{ABC}=\widehat{AMN}$
$\Rightarrow MN\parallel BC$
Trên tia đối của tia $NM$ lấy $P$ sao cho $NM=NP$
Dễ chứng minh $\triangle AMN=\triangle CPN$ (c.g.c)
$\Rightarrow \widehat{AMN}=\widehat{CPN}$ $\Rightarrow AM\parallel CP$
$\Rightarrow BM\parallel CP$
$\Rightarrow \widehat{BMC}=\widehat{PCM}$ (so le trong)
Xét tam giác $BMC$ và $PCM$ có:
$MC$ chung
$\widehat{BMC}=\widehat{PCM}$ (cmt)
$\widehat{BCM}=\widehat{PMC}$ (so le trong)
$\Rightarrow \triangle BMC=\triangle PCM$ (g.c.g)
$\Rightarrow BC=PM=2MN\Rightarrow MN=\frac{BC}{2}$
Bài 1 : a) M là trung điểm AB
N là trung điểm AC
suy ra : MN là Đường trung bình của tam giác ABC
suy ra : MN // BC ; MN = BC/2
b) Ta có : MN // BC và M là trung điểm AB
Mà AD cắt MN tại I nên từ đó suy ra : I là trung điểm của cạnh AD
em chỉ giải được bài 1 thôi nên thông cảm ạ
a: Xét ΔABC có
M là trung điểm của bC
D là trung điểm của AB
Do đó: MD là đường trung bình của ΔABC
Suy ra: MD//AC
Xét tứ giác ADMC có MD//AC
nên ADMC là hình thang
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
Suy ra: BH=HC(hai cạnh tương ứng)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(NM=\dfrac{BC}{2}=3.5\left(cm\right)\)
a: Xét tứ giác AMEN có
\(\widehat{AME}=\widehat{ANE}=\widehat{MAN}=90^0\)
nên AMEN là hình chữ nhật
=>AE=MN
b: AMEN là hình chữ nhật
=>AE cắt MN tại trung điểm của mỗi đường
mà K là trung điểm của MN
nên K là trung điểm của AE
=>A,K,Ethẳng hàng
c:
Xét ΔEMB vuông tại M có \(\widehat{EBM}=45^0\)
nên ΔEMB vuông cân tại M
=>ME=MB
AMEN là hình chữ nhật
=>\(C_{AMEN}=2\left(AM+EM\right)\)
=>\(C_{AMEN}=2\left(AM+MB\right)=2\cdot AB\)
d: Kẻ AH vuông góc BC
=>AH<=AE
Để MN nhỏ nhất thì AE nhỏ nhất
=>H trùng với E
Vậy: Khi E là chân đường cao kẻ từ A xuống BC thì MN nhỏ nhất
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC