CMR tồn tại số có dạng 3232....32 chia hết cho 32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 32 số có dạng 32,3232,...,3232...3232
Theo nguyên lí Diriclet tồn tại 2 số có cùng số dư khi chia cho số 31
Giả sử 2 số đó là 32...32,32...32( lần lượt có m và n cặp 32, n>m)
Khi đó hiệu 2 số đó chia hết cho 31, tức (32...32).10m( n-m cặp 32 )
Mặt khác (10m,31)=1
Từ đó suy ra số 32...32 (n-m cặp 32) chia hết cho 31
Xét 322 số 123, 123123,...., 123123....123
Ta đem 322 số trên lần lượt chia cho 321
Có tất cả 322 số nhưng chỉ có nhận được 321 số dư
Nên theo nguyên lý Direchlet luôn tồn tại 2 số chia cho 321 có cùng số dư. Giả sử 2 số đó là:
a = 123....123 (có i bộ 123)
b = 123.....123 (có j bộ 123) và (i > j)
=> a - b\(⋮\)321
=> 123...123 - 123.....123 \(⋮\)321
i bộ 123 j bộ 123
=> 123123...123 . 103j \(⋮\)321
i - j bộ 123
Mà 103j ko chia hết cho 321
=> 123123...123 \(⋮\)321
Vậy luôn tìm đc số có dạng 123123...123 chia hết cho 321
323232..........32=101010..10.32
=> tồn tại.....................
sao 1010...10 chia hết cho 32 vậy bạn