K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2016

từ phương trình trên và xy=12 ta có : x2 +y2=2xy+1

                                               <=>(x-y)2 =1

                                               <=> x=y+1 (hoặc y=x+1) tùy theo bạn giả sử x hay y lớn hơn nha 

                                                thay vào xy=12 ta có : (y+1)y=12

         giải phương trình y2+y-12 r ta cón nghiệm y bằng bao nhiêu nha bạn nhưng đáp số cần phải có 2 cặp vì đk x<y hoặc y<x là giả sử

19 tháng 9 2019

\(A^2=\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{x^2+y^2-2xy}{x^2+y^2+2xy}\)

Từ \(\frac{x^2+y^2}{xy}=\frac{25}{12}\Rightarrow x^2+y^2=\frac{25}{12}xy\)

Suy ra \(A^2=\frac{\frac{25}{12}xy-2xy}{\frac{25}{12}xy+2xy}=\frac{\frac{1}{12}xy}{\frac{49}{12}xy}=\frac{1}{49}\Rightarrow A=\pm\frac{1}{7}\)

Do \(x< y< 0\) nên \(x-y< 0\) và \(x+y< 0\) \(\Rightarrow A>0\)

Vậy \(A=\frac{1}{7}\)

3 tháng 8 2023

Hình như đề sai phải ko bạn?

2 tháng 1 2017

tim ban voi ai do rui tra loi cho tui ko bt

16 tháng 8 2017

ta có : x/3=y/9 => 2x/6=y/9

=> 2x/6=y/9=2x-y/6-9=12/-3=-4

+, 2x/6=-4 => x=-12

+, y/9=-4 => y=-36

20 tháng 11 2020

a, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)

\(x=-3;y=6\)

b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)

\(x=-52;y=-65\)

c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)

\(x=28;y=16\)

20 tháng 10 2021

Bài 2: 

Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)

Ta có: xy=12

\(\Leftrightarrow12k^2=12\)

\(\Leftrightarrow k^2=1\)

Trường hợp 1: k=1

\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)

Trường hợp 2: k=-1

\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)

2 tháng 7 2021

\(1.\)

Để \(56x3y⋮2\)thì: \(y=0;2;4;6;8\)

+) Nếu \(y=0\)thì: \(5+6+x+3+0=14+x⋮9\Leftrightarrow x=4\)

+) Nếu \(y=2\)thì: \(5+6+x+3+2=16+x⋮9\Leftrightarrow x=2\)

+) Nếu \(y=4\)thì: \(5+6+x+3+4=18+x⋮9\Leftrightarrow x=0;x=9\)

+) Nếu \(y=6\)thì: \(5+6+x+3+6=20+x⋮9\Leftrightarrow x=7\)

+) Nếu \(y=8\)thì: \(5+6+x+3+8=22+x⋮9\Leftrightarrow x=5\)

2 tháng 7 2021

\(2.\)

Ta có: \(45=9.5\)

Để: \(71x1y⋮5\)thì: \(y\in\left\{0;5\right\}\)

Ta được: \(71x10;71x15\)

+) Nếu \(y=0\)thì \(71x1y⋮9\Leftrightarrow x\in\left\{0;9\right\}\)

+) Nếu \(y=5\)thì \(71x1y⋮9\Leftrightarrow x=4\)

Vậy với \(x\in\left\{0;9\right\};y=0\)và \(x=4;y=5\)thì \(71x1y⋮45\)