\(\left\{{}\begin{matrix}ax^2+bx+c>0\\bx^2+cx+a>0\\cx^2+ax+b>0\end{matrix}\right.\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
AH
Akai Haruma
Giáo viên
13 tháng 6 2018
Lời giải:
Với $a=0$ thì pt trở thành: \(bx+c=0\)
\((c+a)^2< ab+bc-2ac\Leftrightarrow c^2< bc\Rightarrow c(c-b)< 0\Rightarrow 0< c< b\)
PT luôn có nghiệm \(x=\frac{-c}{b}\)
Với $a\neq 0$
Nếu \(ac<0\Rightarrow b^2-ac>0\Leftrightarrow \Delta>0\) nên pt \(ax^2+bx+c=0\) có nghiệm
Nếu \(ac>0, c>0\Rightarrow a>0\)
Ta có: \((c+a)^2< ab+bc-2ac< ab+bc\) do \(ac>0\)
\(\Leftrightarrow (c+a)^2< b(a+c)\)
Vì \(a>0, c>0\Rightarrow a+c>0\), chia 2 vế cho $a+c$ thu được:
\(0< c+a< b\Rightarrow \Delta'=b^2-4ac>(c+a)^2-4ac=(a-c)^2\geq 0\)
Do đó pt \(ax^2+bx+c=0\) có nghiệm