Bài 1: Cho tam giác ABC(AB<AC), AD là tia phân giác của góc BAC(D∈BC). Trên cạnh AC lấy điểm M sao cho AM=AB
1) Chứng minh △ABD=△AMD
2) Gọi I là giao điểm của AD và BM. Chứng minh I là trung điểm của BM và AI ⊥BM.
3) Gọi K là trung điểm của AM, trên tia đối của tia KB lấy điểm P sao cho KB=KP. Chứng minh MP//AB
1: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD