Ba đội công nhân tham gia làm ba công việc như nhau. Đội thứ nhất hoàn thành công việc trong 4 ngày. Đội thứ hai hoàn thành công việc trong 6 ngày. Đội thứ ba hoàn thành công việc trong 8 ngày. Tính số công nhân của mỗi đội, biết rằng đội thứ hai có ít hơn đội thứ nhất 4 công nhân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số công nhân đội thứ nhất, đội thứ 2, đội thứ 3 lần lượt là x,y,z
(công nhân;\(x,y,z\in N\)*)
Do số công nhân tỉ lệ với số ngày hoàn thành công việc
=> 4x = 6y = 8z
=> 4x-6y = 0
Mà x - y = 2
=> x = 6; y = 4
=> z = 3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a-b}{6-4}=2\)
Do đó: a=12; b=8; c=6
TK:
Gọi số công nhân đội thứ nhất, đội thứ 2, đội thứ 3 lần lượt là x,y,z
(công nhân;x,y,z∈Nx,y,z∈N*)
Do số công nhân tỉ lệ với số ngày hoàn thành công việc
=> 4x = 6y = 8z
=> 4x-6y = 0
Mà x - y = 2
=> x = 6; y = 4
=> z = 3
Gọi số công nhân của mỗi đội tham gia làm 3 công việc như nhau lần lượt là \(x,y,z\left(x,y,z\inℕ^∗\right)\), công nhân
Vì số công nhân và thời gian làm xong công việc là 2 đại lượng tỉ lệ nghịch và công nhân đội 2 ít hơn đội 1 là 4 công nhân nên:
\(4x=6y=8z\)
\(\Rightarrow\)\(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{8}}\); \(x-y=4\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{8}}=\frac{x-y}{\frac{1}{4}-\frac{1}{6}}=\frac{4}{\frac{1}{12}}=48\)
Do đó:
\(\frac{x}{\frac{1}{4}}=48\Rightarrow x=48.\frac{1}{4}=12\left(TM\right)\)
\(\frac{y}{\frac{1}{6}}=48\Rightarrow y=48.\frac{1}{6}=8\left(TM\right)\)
\(\frac{z}{\frac{1}{8}}=48\Rightarrow z=48.\frac{1}{8}=6\left(TM\right)\)
Vậy số công nhân tham gia làm 3 công việc như nhau mỗi đội lần lượt là \(12,8,6\) công nhân