Tính tổng bình phương tất cả các nghiệm của phương trình:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Điều kiện:
x > 0 log 2 4 x ≠ 6 log 2 x ≠ − 2 ⇔ x > 0 x ≠ 16 x ≠ 1 4 .
1 6 − log 2 4 x + 2 2 + log 2 x = 1 ⇔ 1 4 − log 2 x + 2 2 + log 2 x = 1 ⇔ 2 + log 2 x + 8 − 2 log 2 x 4 − log 2 x 2 + log 2 x = 1 ⇔ 10 − log 2 x = − log 2 2 x + 2 log 2 x + 8 ⇔ − log 2 2 x + 3 log 2 x − 2 = 0 ⇔ log 2 x = 1 log 2 x = 2 ⇔ x = 2 x = 4 .
Vậy tổng bình phương tất cả các nghiệm của phương trình bằng 20
Đáp án B.
Điều kiện: x ≠ 0 .
Ta có 2 cos 2 x cos 2 x − cos 2018 π 2 x = cos 4 x − 1
⇔ 2 cos 2 2 x − 2 cos 2 x . cos 2018 π 2 x = cos 4 x − 1
⇔ cos 4 x + 1 − 2 cos 2 x . cos 2018 π 2 x = cos 4 x − 1
⇔ cos 2 x . cos 2018 π 2 x = 1
ta có cos 2 x . cos 2018 π 2 x ≤ 1
do đó cos 2 x . cos 2018 π 2 x = 1 ⇔ cos 2 x = 1 cos 2018 π 2 x = 1 hoặc cos 2 x = − 1 cos 2018 π 2 x = − 1
cos 2 x = 1 cos 2018 π 2 x = 1 ⇔ x = k π x = 1009 π l k , l ∈ ℤ
⇒ k l = 1009 ⇒ k = 1009 l = 1 hoặc k = − 1009 l = − 1 hoặc k = 1 l = 1009 hoặc k = − 1 l = − 1009
Trong trường hợp này tổng các nghiệm dương của phương trình bằng 1010 π
cos 2 x = − 1 cos 2018 π 2 x = − 1 ⇔ x = π 2 + k π x = 2018 π 1 + 2 l k , l ∈ ℤ
⇒ 1 2 + k = 2018 1 + 2 l ⇒ 1 + 2 k 1 + 2 l = 2.2018 (*)
Vế trái của (*) là số lẻ, vế phải của (*) là số chẵn. Do đó không có giá trị nguyên nào của k, l thỏa mãn (*).
* Tóm lại: Tổng các nghiệm dương của phương trình bằng 1010π.
Chọn D.
Phương trình đã cho tương đương với phương trình
z( z + 2) ( z - 1) ( z + 3)
Hay ( z2 + 2z) ( z2 + 2z - 3) = 10
Đặt t = z2 + 2z. Khi đó phương trình trở thành: t2 - 2t – 10 = 0.
Vậy phương trình có các nghiệm:
Tổng tất cả các phần thực của các nghiệm phương trình đã cho là:
-1+ ( -1) + (-1) + ( -1) = -4.
ta có (2x+1)(x-1)2(2x+3)=(4x2+8x+3)(x2+2x+1)=18
đặt x2+2x+1=a ta có (4a-1)a=18
giải hệ trên ta được 2 nghiệm x=0,5 và x=-2,5
đến đay các ban tự giai tiếp nhé