Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ nhé
a. ví tam giác ABC là tam giác cân và có góc A bằng 90 độ nên tam giác ABC là tam giác vuông cân tại A
=> góc BAC = 90 độ và AB=AC
Xét tứ giác ABIC có góc BAC =90 độ, góc ABI = 90 độ (vì AIvuông góc với AB ), góc ACI =90độ (vì AC vuông góc với CI)
=> tứ giác ABIC là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)
mà AB=AC (cmt)
=> Tứ giác ABIC là hình vuông (dấu hiệu nhận biết hình vuông)
=> AI là phân giác góc BAC
a,b,c là số nguyên tố nên: a,b,c∈N∗và a,b,c≥2 Do đó,
ta có: c≥2^2+2^2>2 màc là số nguyên tố nên c phải là số lẻ:
Ta có: a^b+b^a+ba là số lẻ nên tồn tại a^b hoặc b^a chẵn mà a,b là số nguyên tố nên a=2 ∨ b=2 Xét 1 trường hợp, trường hợp còn lại
tương tự: b=2 và a phải là số lẻ nên a=2k+1 k∈N∗
Ta có: 2^a+a^2=c Nếu a=3 thì c=17 thỏa mãn. Nếu a>3 mà a là số nguyên tố nên a không chia hết cho 3 suy ra: a^2 chia 3 dư 1. Ta
có: 2^a=2^(k+1)=4^k.2−2+2=(4^k−1).2+2=BS(3)nên chia 3 dư 2 Từ đó, 2^a+a^2 ⋮3 nên c⋮3 suy ra c là hợp số, loại.
Vậy (a;b;c)=(2;3;17);(3;2;17)
HT
Số đó là 266 ; 329 ; 392 ; 455 ; 518 ; 581 ; 644 ; 707 ; 770 ; 833 nha
đáp án:a=2; b=3; c=5.Thử lại: abc = 2.3.5=30 ; ab+bc+ca = 2.3+3.5+5.2=31. 30 < 31 (thỏa mãn)
ta có
abc phải chia hết cho 17, mà a,b,c nguyên tố nên 1 trong 3 số phải chia hết cho 17
không mất tổng quát ta giả sử a =17
nên \(bc=17+b+c\text{ hay }\left(b-1\right)\left(c-1\right)=18\)
\(\Rightarrow b-1\in\left\{1,2,3,6,9,18\right\}\Rightarrow b\in\left\{2,3,4,7,10,19\right\}\)
mà b nguyên tố nên \(b\in\left\{2,3,7,19\right\}\text{ tương ứng }c\in\left\{19,10,4,2\right\}\)
mà c nguyên tố nên \(\hept{\begin{cases}b=2\\c=19\end{cases}\text{hoặc }\hept{\begin{cases}b=19\\c=2\end{cases}}}\)
vậy (a,b,c) là bộ các giao hoán của ( 17, 19, 2 )