K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác ABCD có

AB//CD

AD//BC

Do đó: ABCD là hình bình hành

Suy ra: IB=ID

7 tháng 9 2019

vì oa=ob

=>tam giác aob là tam giác cân tại o (đn tam giác cân)

=>góc oab=góc oba

   mà  ab//cd 

=> abcd là hình thang cân

đúng thì k cho mik vs ạ

Sửa đề: Đường thẳng qua O song song với AB

Xét ΔAOB và ΔCOD có 

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

\(\widehat{BAO}=\widehat{DCO}\)(hai góc so le trong, AB//CD)

Do đó: ΔAOB\(\sim\)ΔCOD(g-g)

Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{OA}{OB}=\dfrac{OC}{OD}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{OA}{OB}=\dfrac{OC}{OD}=\dfrac{OA+OC}{OB+OD}=\dfrac{AC}{BD}\)

\(\Leftrightarrow\dfrac{OC}{OD}=\dfrac{AC}{BD}\)

\(\Leftrightarrow\dfrac{CO}{CA}=\dfrac{DO}{DB}\)(1)

Xét ΔDAB có 

M∈AD(gt)

O∈BD(gt)

MO//AB(gt)

Do đó:\(\dfrac{DO}{DB}=\dfrac{MO}{AB}\)(Hệ quả của Định lí Ta lét)(2)

Xét ΔABC có 

O∈AC(gt)

N∈BC(gt)

ON//AB(gt)

Do đó: \(\dfrac{CO}{CA}=\dfrac{ON}{AB}\)(Hệ quả của Định lí Ta lét)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{OM}{AB}=\dfrac{ON}{AB}\)

hay OM=ON(đpcm)

\(\Leftrightarrow OM+ON=MN=2\cdot ON\)
Xét ΔBCD có 

O∈BD(gt)

N∈BC(gt)

ON//DC(gt)

Do đó: \(\dfrac{ON}{CD}=\dfrac{BN}{BC}\)(Hệ quả của Định lí Ta lét)(4)

Xét ΔABC có 

O∈AC(gt)

N∈BC(gt)

ON//DC(gt)

Do đó: \(\dfrac{ON}{AB}=\dfrac{CN}{CB}\)(Hệ quả của Định lí Ta lét)

\(\Leftrightarrow\dfrac{ON}{AB}+\dfrac{ON}{CD}=\dfrac{BN}{BC}+\dfrac{CN}{BC}=1\)

\(\Leftrightarrow\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{1}{ON}=\dfrac{2}{2\cdot ON}=\dfrac{2}{MN}\)(đpcm)

27 tháng 2 2022

a. Xét △DMI có: AB//DM.

\(\Rightarrow\dfrac{AB}{DM}=\dfrac{IA}{IM}\) (hệ quả định lí Ta-let)

a. Xét △CMK có: AB//CM.

\(\Rightarrow\dfrac{AB}{CM}=\dfrac{KB}{KM}\) (hệ quả định lí Ta-let)

Mà \(DM=CM\) (M là trung điểm DC)

\(\Rightarrow\dfrac{AB}{DM}=\dfrac{KB}{KM}\)

-Xét △ABM có: \(\dfrac{IA}{IM}=\dfrac{KB}{KM}\left(=\dfrac{AB}{DM}\right)\)

\(\Rightarrow\)IK//AB (định lí Ta-let đảo).

b) -Xét △ADM có: EI//DM.

\(\Rightarrow\dfrac{EI}{DM}=\dfrac{AI}{AM}\) (hệ quả định lí Ta-let)

-Xét △ACM có: KI//CM.

\(\Rightarrow\dfrac{IK}{CM}=\dfrac{AI}{AM}\) (hệ quả định lí Ta-let)

Mà  \(DM=CM\) (M là trung điểm DC)

\(\Rightarrow\dfrac{IK}{DM}=\dfrac{AI}{AM}=\dfrac{EI}{DM}\) nên \(IK=EI\).

-Xét △BCM có: KF//CM.

\(\Rightarrow\dfrac{KF}{CM}=\dfrac{BK}{BM}\) (hệ quả định lí Ta-let)

-Xét △BDM có: IK//DM.

\(\Rightarrow\dfrac{IK}{DM}=\dfrac{BK}{BM}\) (hệ quả định lí Ta-let)

Mà  \(DM=CM\) (M là trung điểm DC)

\(\Rightarrow\dfrac{IK}{CM}=\dfrac{BK}{BM}=\dfrac{KF}{CM}\) nên \(IK=KF\)

-Vậy \(EI=IK=KF\)