Cho a,b,c,m,n,p là các số tự nhiên khác 0 va a+m=b+n=c+p=a+b+c . Chứng tỏ rằng m+n>p;n+p>m;p+m>n.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
7 tháng 2 2020
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
12 tháng 2 2017
1. Do \(\frac{a}{b}< 1\Leftrightarrow\)a<b \(\Leftrightarrow\)a+n<b+n
Ta có: \(\frac{a}{b}\)= 1 - \(\frac{a-b}{b}\)
\(\frac{a+n}{b+n}\)= 1- \(\frac{a-b}{b+n}\)
Do \(\frac{a-b}{b}\)>\(\frac{a-b}{b+n}\)=> \(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)
2.Tương tự