K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

Xét tứ giác CPEO có:

∠(PCO) = ∠(PEO) =  90 0 (gt)

⇒ ∠(PCO) + ∠(PEO) =  180 0

⇒ Tứ giác CPEO là tứ giác nội tiếp

Xét tứ giác OEQD có:

∠(OEQ) = ∠(ODQ) = 90 0  (gt)

⇒ ∠(OEQ) + ∠(ODQ) =  180 0

⇒ Tứ giác OEQD là tứ giác nội tiếp

22 tháng 11 2023

a: Xét (O) có

AM,AC là tiếp tuyến

Do đó: AM=AC và OA là tia phân giác của \(\widehat{MOC}\)

=>\(\widehat{MOC}=2\cdot\widehat{MOA}\)

Xét (O) có

BM,BD là tiếp tuyến

Do đó: BM=BD và OB là phân giác của \(\widehat{MOD}\)

=>\(\widehat{MOD}=2\cdot\widehat{MOB}\)

\(\widehat{MOC}+\widehat{MOD}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOA}+2\cdot\widehat{MOB}=180^0\)

=>\(2\left(\widehat{MOA}+\widehat{MOB}\right)=180^0\)

=>\(\widehat{MOA}+\widehat{MOB}=\dfrac{180^0}{2}=90^0\)

=>\(\widehat{AOB}=90^0\)

b: AB=AM+BM

mà AM=AC và BM=BD

nên AB=AC+BD

c: Xét ΔOAB vuông tại O có OM là đường cao

nên \(AM\cdot MB=OM^2\)

=>\(AC\cdot BD=R^2\) không đổi khi M di chuyển trên (O)

30 tháng 12 2021

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra ΔCOD cân tại O

17 tháng 9 2016

ZXCZZCXXC

17 tháng 9 2016

ZXCZXCZXC

6 tháng 7 2021

Hình bạn tự vẽ rồi nhâ

từ câu a) ta thấy AB là tiếp tuyến của đường tròn (J) đường kính CD

gọi P,Q lần lượt là giao của AD và (O),BC và (J)

có góc APB=CQD=90 độ (góc nt chắn nx đg tròn)

=>góc DPB= góc BQD=90 độ

=>tugiac BQPD là tgnt =>góc PDB= góc PQI(1)

Vì AC//BD nên góc PDB=góc IAC(2)

từ (1) và (2) =>góc PQI= góc IAC

=>tgPQI đồng dạng tgCAI(g.g)

=>PI/CI=QI/AI

=>IP.IA=IC.IQ

=>phương tích của điểm I đối vs (O) và (J) = nhau

=>I nằm trên trục đẳng phương EF của 2 đg tròn 

Vậy I,E,F thằng hàng(dpcm)

 

6 tháng 7 2021

em cảm ơn ạ!

11 tháng 12 2023

a: Xét tứ giác ACMO có

\(\widehat{CAO}+\widehat{CMO}=90^0+90^0=180^0\)

=>ACMO là tứ giác nội tiếp

=>A,C,M,O cùng thuộc một đường tròn

b: Xét (O) có

CA,CM là các tiếp tuyến

Do đó: CA=CM và OC là phân giác của góc AOM

Xét (O) có

DM,DB là các tiếp tuyến

Do đó: DM=DB và OD là phân giác của góc MOB

OC là phân giác của góc AOM

=>\(\widehat{AOM}=2\cdot\widehat{MOC}\)

Ta có: OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

Ta có: \(\widehat{AOM}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)

=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

Xét ΔOCD vuông tại O có OM là đường cao

nên \(OM^2=MC\cdot MD\)

mà MC=CA và MD=DB

nên \(AC\cdot BD=OM=R^2\) không đổi

c: Gọi N là trung điểm của CD

Xét hình thang ACDB(AC//DB) có

O,N lần lượt là trung điểm của AB,CD

=>ON là đường trung bình của hình thang ABDC

=>ON//AC//BD

=>ON\(\perp\)AB

Vì ΔCOD vuông tại O có N là trung điểm của CD

nên N là tâm đường tròn ngoại tiếp ΔCOD

Xét (N) có

NO là bán kính

AB\(\perp\)NO tại O

Do đó: AB là tiếp tuyến của (N)

=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔCOD