K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)

hay a=7

27 tháng 1 2022

a) Ta có f(x) - 5 \(⋮\)x + 1 

=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1

=> x3 + mx2 + nx  - 3 \(⋮\)x + 1

=> x = - 1 là nghiệm đa thức 

Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0

<=> m - n = 4 (1) 

Tương tự ta được f(x) - 8 \(⋮\)x + 2 

=> x3 + mx2 + nx - 6 \(⋮\) x + 2

=> x = -2 là nghiệm đa thức

=> (-2)3 + m(-2)2 + n(-2) - 6 = 0

<=> 2m - n = 7 (2) 

Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)

Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2  

27 tháng 1 2022

b)  f(x) - 7 \(⋮\)x + 1

=> x3 + mx + n - 7 \(⋮\) x + 1 

=> x = -1 là nghiệm đa thức 

=> (-1)3 + m(-1) + n - 7 = 0

<=> -m + n = 8 (1) 

Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3 

=> x = 3 là nghiệm đa thức 

=> 33 + 3m + n + 5 = 0

<=> 3m + n = -32 (2) 

Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)

Vậy f(x) = x3 - 10x -2

3 tháng 10 2021

Để \(f\left(x\right):\left(x-1\right)R4\) thì \(x^3+mx+n=\left(x-1\right)\cdot a\left(x\right)+4\)

Thay \(x=1\Leftrightarrow m+n=4\left(1\right)\)

Để \(f\left(x\right):\left(x+1\right)R6\) thì \(x^3+mx+n=\left(x+1\right)\cdot b\left(x\right)+6\)

Thay \(x=-1\Leftrightarrow n-m-1=6\Leftrightarrow n-m=7\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}m=\left(4-7\right):2=-\dfrac{3}{2}\\n=7+\left(-\dfrac{3}{2}\right)=\dfrac{11}{2}\end{matrix}\right.\)

Theo định lý Bơ du ta có:

Số dư của f(x) cho x-1 là \(f\left(1\right)\)

\(\Rightarrow f\left(1\right)=4\Rightarrow1+m+n=4\Leftrightarrow m+n=3\left(1\right)\)

Số dư của f(x) cho x+1 là \(f\left(-1\right)\)

\(\Rightarrow f\left(-1\right)=6\Rightarrow-1-m+n=6\Leftrightarrow-m+n=7\left(2\right)\)

Từ (1) và (2) ta có:

\(\left\{{}\begin{matrix}m=-2\\n=5\end{matrix}\right.\)

 

5 tháng 12 2017

2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d

=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d

=> 7(5n+7) chia hết cho d

hay 35n+49 chia hết cho d

(35n+50)-(35n+49) chia hết cho d

35n+50-35n-49 chia hết cho d

(35n-35n)+(50-49) chia hết cho d

0+1 chia hết cho d 1

chia hết cho d => d=1

Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)

Ta có a chia 25 dư 5 => a + 20 chia hết cho 25

        a chia 28 dư 8 => a + 20 chia hết cho 28

        a chia 35 dư 15 => a + 20 chia hết cho 35

=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}

Mà 119 < (a + 20) < 1020

Nên a + 20 = 700

=> a = 680

Vậy số tự nhiên cần tìm là 680

5 tháng 10 2019

3x^2+mx+27 x+5 3x+(m-15) 3x^2+15x - (m-15)x+27 (m-15)x+5(m-15) - 27-5(m-15)

Vì \(A\left(x\right):B\left(x\right)\)dư 2 \(\Leftrightarrow27-5\left(m-15\right)=2\)

                                           \(\Leftrightarrow m-15=5\)

                                           \(\Leftrightarrow m=20\)

Vậy ...