Trong một bến xe buýt, người ta thấy rằng xe buýt số 32 cứ 10 phút có 1 chuyến vào bến còn xe buýt số 26 cứ 15 phút có một chuyến vào bến. Lúc 10 giờ, người ta thấy hai xe vào bến cùng lúc. Hỏi cả 2 xe buýt số 32 và 26 sẽ lại vào bến cùng một lúc sớm nhất lúc mấy giờ? giải thích cách làm ra hộ mik nha mik cmar ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi m (phút) (m ∈ N*) là thời gian từ lúc taxi và xe buýt cùng rời bến lần này đến lúc taxi và xe buýt cùng rời bến lần tiếp theo.
Ta có: m ⋮ 10 và m ⋮ 12
Vì m nhỏ nhất nên m là BCNN(10; 12)
Ta có: 10 = 2 . 5
12 = 22 . 3
BCNN(10; 12) = 22 . 3 . 5 = 60
Vậy sau 60 phút = 1 giờ thì taxi và xe buýt cùng rời bến lần tiếp theo. Lúc đó là 6 + 1 = 7 giờ
Gọi t/g từ lúc xe taxi và xe buýt cùng trời bến lần này đến lúc xe taxi và xe buýt cùng rời bến lần tiếp theo là a ( phút )
Ta có \(a⋮10;a⋮12\) và a là BCNN(10,12) ( vì a nhỏ nhất )
Từ đây ta tìm đc a là 60
Vậy lúc 7h lại có 1 xe taxi và 1 xe buýt cùng rời bến
Gọi x (phút) (x ∈ N) là thời gian từ lúc taxi và xe buýt cùng rời bến lần này đến lúc taxi và xe buýt cùng rời bến lần tiếp theo.
Ta có: x ⋮ 10 và x ⋮ 12
Vì m nhỏ nhất nên m là BCNN(10; 12)
Ta có: 10= 2.5
12=22.3
BCNN(10;12)=22.3.5=60
Vậy sau 60 phút = 1 giờ thì taxi và xe buýt cùng rời bến lần tiếp theo. Lúc đó là 6 + 1 = 7 giờ.
Gọi khoảng thời gian để 2 xe cùng rời bến lần 2 là a (phút) (a \(\in\) N*)
Theo bài ra, ta có: a nhỏ nhất a chia hết cho 10 a chia hết cho 12
=> a = BCNN(10; 12)
Ta lại có: 10 = 2.5 12 = 2 2 .3
=> BCNN(10; 12) = 2 2 .3.5 = 60
=> a = 60
Vậy khoảng thời gian để 2 xe cùng cập bên lần 2 là 60 phút tức 1 giờ.
Vậy 2 xe cùng cập bến lần tiếp theo lúc: 6 + 1 = 7 (giờ)
Gọi số giờ tiếp theo để hai xe cùng rời bến là a (phút)
Theo đầu bài ta có: a chia hết cho 10 ; a chia hết cho 12 => a ∈ BC(10,12)
Mà a là ít nhất => a = BCNN(10,12) = 2 2 .3.5 = 60 = 1h
Vậy lúc 6+1 = 7h thì hai xe lại cùng rời bến
BCNN(15, 20) = 60
60 phút nên lúc 11h thì tắc xi và xe bus lại cùng rời bến