x^2-y^2+11x-11y
Mọi người giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{1}{Rtđ}=\dfrac{1}{R1}+\dfrac{1}{R2}=\dfrac{1}{8}+\dfrac{1}{12}=\dfrac{5}{24}\)
\(\Rightarrow Rtđ=\)4,8
b)ta có:U=U1+U2=I.Rtđ=3.4,8=14,4
c)I1=\(\dfrac{U1}{R1}=\dfrac{14,4}{8}\)=1,8
I2=I-I1=3-1,8=1,2
`(15-x)+(x-12)=7-(-5+x)`
`=>15-x+x-12=7+5-x`
`=>3=12-x`
`=>x=12-3`
`=>x=9`
Vậy `x=9`
(8x-3)(3x+2)-(4x+7)(x+4) = (2x+1)(5x-1)-33
(24x2-9x+16x-6)-(4x2+7x+16x+28) = (10x2+5x-2x-1)-33
24x2+7x-6-4x2-23x-28 = 10x2+3x-1-33
20x2-16x-34 = 10x2+3x-34
<=> 20x2-16x = 10x2+3x
2x2-19x=0
2x(x-19)=0
=>\(\left[{}\begin{matrix}2x=0\Rightarrow x=0\\x-19=0\Rightarrow x=19\end{matrix}\right.\)
Không chắc lắm :)
ở trên đúng r, nhưng sai từ chỗ 2x^2 -19x=0, đáng lẽ phải là 10x^2 -19x =0 mới đúng
$n_{NaCl} = C_M.V = 0,1.2,5 = 0,25(mol)$
$m_{NaCl} = n.M = 0,25.58,5 = 14,625(gam)$
Ta có: \(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{\left(a+1\right)b^2}{b^2+1}\)
\(\ge\left(a+1\right)-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\)
Tương tự ta có:\(\frac{b+1}{c^2+1}\ge b+1-\frac{bc+c}{2};\frac{c+1}{a^2+1}\ge c+1-\frac{ca+a}{2}\)
Cộng theo vế ta có: \(VT\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}=6-\frac{3+ab+bc+ca}{2}\)
Mà theo BĐT AM-GM: \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)
Suy ra \(VT\ge6-3=3\)(ĐPCM)
\(=\left(x-y\right)\left(x+y\right)+11\left(x-y\right)=\left(x+y+11\right)\left(x-y\right)\)
Wow