cong phan thuc
x2+2/x2+4+5/x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(=\dfrac{8}{\left(x^2+3\right)\left(x-1\right)\left(x+1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x^2+3\right)\left(x-1\right)}{\left(x^2+3\right)\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1}{x-1}\)
Ta có: \(\Delta'=32>0\)
\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)
\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)
Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\)
x4+x2+1
=(x2)2+2x2+1-2x2+x2
=(x2+1)2-2x2+x2
= (x² + 1)² − x²
= (x² + x+ 1 )(x² − x+ 1 )
\(x^4+x^2+1\)
\(=\left[\left(x^2\right)^2+2.x^2.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]-\left(\frac{1}{2}\right)^2+1\)
\(=\left(x^2+\frac{1}{2}\right)^2-\frac{1}{4}+\frac{4}{4}\)
\(=\left(x^2+\frac{1}{2}\right)^2+\frac{3}{4}\)
x+\(\dfrac{y}{2}\)+x+\(\dfrac{2}{2}\)x2+4
=2x+\(\dfrac{4+y}{2}\)+4
Ta có biến đổi sau :
\(\dfrac{x^2-2x-3}{x^2+x}=\dfrac{x^2+x-3x-3}{x\left(x+1\right)}=\dfrac{x\left(x+1\right)-3\left(x+1\right)}{x\left(x+1\right)}=\dfrac{\left(x+1\right)\left(x-3\right)}{x\left(x+1\right)}=\dfrac{x-3}{x}\left(1\right)\)Tương tự , ta có :
\(\dfrac{x^2-4x+3}{x^2-x}=\dfrac{x^2-x-3x+3}{x\left(x-1\right)}=\dfrac{x\left(x-1\right)-3\left(x-1\right)}{x\left(x-1\right)}=\dfrac{\left(x-1\right)\left(x-3\right)}{x\left(x-1\right)}=\dfrac{x-3}{x}\left(2\right)\)Do đó , ba phân thức bằng nhau
\(=\dfrac{x^2+2+5x-10}{x^2-4}=\dfrac{x^2+5x-8}{\left(x-2\right)\left(x+2\right)}\)