Bài1: a) Phân tích đa thức sau thành nhân tử:
A= 2a2b2 + 2b2c2 + 2a2c2 -a4 -b4 -c4
b) CMR : nếu a,b,c là 3 cạnh của tam giác thÌ A >0
Bài 2: Cho 3 số phân biệt a,b,c. Cm:
A= a4(b-c) +b4(c-a) +c4(a-b) luôn khác 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)
\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2-2\left(ca\right)^2\right)\)
\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2-4\left(ca\right)^2\right)\)
Áp dụng hàng đẳng thức \(\left(a^2-b^2+c^2\right)=a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2\):
\(A=-\left[\left(a^2-b^2+c^2\right)^2-4\left(ca\right)^2\right]\)
\(A=-\left(a^2-b^2+c^2-2ca\right)\left(a^2-b^2+c^2+2ca\right)\)
2222222222222a+257222222222222222222222222222222222222222222222222222222222222222222222222222222222222222a=?
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2=\left(a^4-2a^2b^2+b^4\right)+2\left(a^2-b^2\right)c^2+c^4-4a^2c^2=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2=\left(a^2-b^2+c^2-2ac\right)\left(a^2-b^2+c^2+2ac\right)\)
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)
\(=\left(a^4-2a^2b^2+b^4\right)+2\left(a^2-b^2\right)c^2+c^4-4a^2c^2\)
\(=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2\)
\(=\left(a^2-2ac+c^2-b^2\right)\left(a^2+2ac+c^2-b^2\right)\)
\(=\left(a-c-b\right)\left(a-c+b\right)\left(a+c-b\right)\left(a+c+b\right)\)
Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\) thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)
https://olm.vn/hoi-dap/detail/108617134952.html
Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo
\(VT=\left(a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2\right)-4b^2c^2\)
\(=\left(a^2-b^2-c^2\right)^2-\left(2bc\right)^2\)
\(=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)\)
\(=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)
\(=\left(a-b-c\right)\left(a+b+c\right)\left(a+c-b\right)\left(a+b-c\right)\)
Do a;b;c là độ dài 3 cạnh của tam giác, ta có:
\(\left\{{}\begin{matrix}a-b-c< 0\\a+b+c>0\\a+c-b>0\\a+b-c>0\end{matrix}\right.\) \(\Rightarrow VT< 0\) (đpcm)
1: =(a+b)^3+c^3-3ab(a+b)-3acb
=(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
1/ phân tích thành nhân tử ;
= C2-( a +b )2=( c-a -b ) . ( c+a +b )