Cho tam giác ABC. D thuộc BC, E thuộc AC sao cho BC = 3 x BD, AE x 3 = 2 x AC, AD và BE cắt nhau tại I. Tính tỉ số BI và IE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B,E,I thẳng hàng nên ta có:
\(\dfrac{IA}{IC}\cdot\dfrac{ED}{EA}\cdot\dfrac{BC}{BD}=1\)
=>\(\dfrac{IA}{IC}\cdot\dfrac{1}{2}\cdot\dfrac{5}{2}=1\)
=>\(\dfrac{IA}{IC}\cdot\dfrac{5}{4}=1\)
=>\(\dfrac{IA}{IC}=\dfrac{4}{5}\)
Kẻ DI // BK (I thuộc AC)
\(BD=\frac{3}{4}BC\Rightarrow\frac{BD}{BC}=\frac{3}{4}\)
\(\hept{\begin{cases}AE+ED=AD\\AE=\frac{1}{3}AD\end{cases}\Rightarrow}\hept{\begin{cases}AE=\frac{1}{3}AD\\ED=\frac{2}{3}AD\end{cases}\Rightarrow}\frac{AE}{ED}=\frac{1}{2}\)
Ta có: \(\frac{AK}{CK}=\frac{AK}{KI}.\frac{KI}{KC}=\frac{AE}{ED}.\frac{BD}{BC}=\frac{1}{2}.\frac{3}{4}=\frac{3}{8}\)
Trả lời............
Kẻ đường thẳng DI song song với BK (I thuộc AC)
BD = 3/4 BC suy ra BD/BC=3/4
AE + ED=AD (1)
AE=1/3 AD
Suy ra AE=1/3 AD ; ED = 2/3 AD suy ra AE/ED = 1/2 (2)
Từ (1) và (2) ta suy ra được :
AK/CK = AK/KI . KI/KC = AE/ED . BD/BC = 1/2 . 3/4=3/8
..............học tốt............