Cho tam giác ABC vuông tại A . Gọi M N lần lượt là trung điểm của các cạnh BC và AC . Gọi D là điểm đối xứng của N qua M .
a) Chứng minh tứ giác BDCN là hình bình hành
b) Chứng minh tứ giác ABDN là hình chữ nhật
c) Chứng minh Sabc = 2Sabm
EM CẦN GẤP Ý B C NÊN AI GIÚP EM VỚI :((
\(a,\) Vì M là trung điểm ND và BC nên BDCN là hình bình hành
\(b,\) Vì BDCN là hình bình hành nên \(BD\text{//}NC\) hay \(BD\text{//}NA\) và \(BD=NC=NA\) (N là trung điểm AC)
Do đó ABDN là hình bình hành
Mà \(\widehat{BAC}\equiv\widehat{NAB}=90^0\) nên ABDN là hình chữ nhật
\(c,\) Kẻ đường cao AH
\(\Rightarrow\left\{{}\begin{matrix}S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH.2BM=AH.BM\\S_{ABM}=\dfrac{1}{2}AH.BM\end{matrix}\right.\\ \Rightarrow\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{AH.BM}{2AH.BM}=\dfrac{1}{2}\\ \Rightarrow S_{ABC}=2S_{ABM}\)
Em cảm ơn ạ