Tìm GTLN của hàm số sau: \(f\left(x\right)=\left(2-x\right)\left(x+3\right);-3\le x\le2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(h\left(x\right)=x^2-4x+5+m\)
\(g\left(x\right)=\left|h\left(x\right)\right|=\left|f\left(x\right)+m\right|=\left|x^2-4x+5+m\right|\)
\(h\left(0\right)=5+m;h\left(4\right)=5+m;h\left(2\right)=1+m\)
TH1: \(1+m>0\Leftrightarrow m>-1\)
\(max=5+m=9\Leftrightarrow m=4\left(tm\right)\)
TH2: \(5+m< 0\Leftrightarrow m< -5\)
\(max=-1-m=9\Leftrightarrow m=-10\left(tm\right)\)
TH3: \(5+m>0>1+m\Leftrightarrow-5< m< -1\)
Nếu \(5+m< -1-m\Leftrightarrow m< -3\)
\(max=-1-m=9\Leftrightarrow m=-10\left(tm\right)\)
Nếu \(5+m=-1-m\Leftrightarrow m=-3\)
\(max=5+m=2\ne9\)
\(\Rightarrow m=-3\) không thỏa mãn yêu cầu bài toán
Nếu \(5+m>-1-m\Leftrightarrow m>-3\)
\(max=5+m=9\Leftrightarrow m=4\left(tm\right)\)
Vậy \(m=4;m=-10\)
\(g'\left(x\right)=0\Rightarrow x=0\)
Ta thấy \(g\left(x\right)\) đồng biến trên \(\left(0;+\infty\right)\)
\(\Rightarrow g\left(f\left(x\right)\right)\) đồng biến khi \(f\left(x\right)\ge0\)
\(\Rightarrow g\left(f\left(x\right)\right)\) đồng biến trên \(\left(3;+\infty\right)\) khi \(f\left(x\right)\ge0\) ; \(\forall x>3\)
\(\Leftrightarrow x^2-4x\ge-m\) ; \(\forall x>3\)
\(\Leftrightarrow-m\le\min\limits_{x>3}\left(x^2-4x\right)\)
\(\Rightarrow-m\le-3\Rightarrow m\ge3\)
\(y=\left(x+2\right)\left(3-x\right)\)
\(=3x-x^2+6-2x\)
\(=-x^2+x+6\)
=>y'=-2x+1
Đặt y'=0
=>-2x+1=0
=>-2x=-1
=>\(x=\dfrac{1}{2}\)
\(f\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}+2\right)\left(3-\dfrac{1}{2}\right)=\dfrac{5}{2}\cdot\dfrac{5}{2}=\dfrac{25}{4}\)
\(f\left(-2\right)=\left(-2+2\right)\left(3+2\right)=0\)
\(f\left(3\right)=\left(3+2\right)\left(3-3\right)=0\)
=>\(y_{max\left[-2;3\right]}=\dfrac{25}{4}\)
a.
\(y=x^2\left(4-2x\right)=x.x.\left(4-2x\right)\le\left(\dfrac{x+x+4-2x}{3}\right)^3=\dfrac{64}{27}\)
\(y_{max}=\dfrac{64}{27}\) khi \(x=4-2x\Rightarrow x=\dfrac{4}{3}\)
b.
\(y=x\left(2-x\right)^2=\dfrac{1}{2}.2x.\left(2-x\right)\left(2-x\right)\le\dfrac{1}{2}\left(\dfrac{2x+2-x+2-x}{3}\right)^3=\dfrac{32}{27}\)
\(y_{max}=\dfrac{32}{27}\) khi \(2x=2-x\Rightarrow x=\dfrac{2}{3}\)
2.
\(I=\int e^{3x}.3^xdx\)
Đặt \(\left\{{}\begin{matrix}u=3^x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=3^xln3dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}\int e^{3x}.3^xdx=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}.I\)
\(\Rightarrow\left(1+\dfrac{ln3}{3}\right)I=\dfrac{1}{3}e^{3x}.3^x\)
\(\Rightarrow I=\dfrac{1}{3+ln3}.e^{3x}.3^x+C\)
1.
\(I=\int\left(2x-1\right)e^{\dfrac{1}{x}}dx=\int2x.e^{\dfrac{1}{x}}dx-\int e^{\dfrac{1}{x}}dx\)
Xét \(J=\int2x.e^{\dfrac{1}{x}}dx\)
Đặt \(\left\{{}\begin{matrix}u=e^{\dfrac{1}{x}}\\dv=2xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\dfrac{e^{\dfrac{1}{x}}}{x^2}dx\\v=x^2\end{matrix}\right.\)
\(\Rightarrow J=x^2.e^{\dfrac{1}{x}}+\int e^{\dfrac{1}{x}}dx\)
\(\Rightarrow I=x^2.e^{\dfrac{1}{x}}+C\)
a) Tập xác định của hàm số đã cho là: \({D_f} = \mathbb{R};\;{D_g} = \mathbb{R}\)
b) Ta có: \(f\left( { - x} \right) = {\left( { - x} \right)^2} = {x^2} = f\left( x \right)\)
Đồ thị của hàm số \(y = f\left( x \right) = {x^2}\) đối xứng qua trục tung
c) Ta có: \(g\left( { - x} \right) = {\left( { - x} \right)^3} = - {x^3} = - g\left( x \right)\)
Đồ thị của hàm số \(y = g\left( x \right) = {x^3}\) đối xứng qua gốc tọa độ
\(f\left(x\right)=\left(2-x\right)\left(x+3\right)\le\dfrac{1}{4}\left(2-x+x+3\right)^2=\dfrac{25}{4}\)
\(f\left(x\right)_{max}=\dfrac{25}{4}\) khi \(x=\dfrac{5}{2}\)