Cho ΔABC cân tại A ( AB>BC) . Từ điểm M trên cạnh đáy BC , kẻ MN//AC , MP//AB ( N∈AB , P∈AC )
a, C/M : tứ giác ANMP là hình bình hành
b, Xác định vị trí của M trên BC để tứ giác ANMP là hình thoi
c, Từ điểm M hạ ME⊥AC , MF⊥AC. C/M : ME+MF không phụ thuộc vào vị trí của M trên BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Giả thuyết: tứ giác ANMP là hình chữ nhật thì hình bình hành ANMP vuông tại A
=> \(\Delta ABC\)vuông tại A
Vậy: DK để tứ giác ANMP là hình chữ nhật thì \(\Delta ABC\)phải vuông tại A
d) Để tứ giác ANMP là hình vuông thì:
+ Tứ giác ANMP phải là hình thoi
+ Tứ giác ANMP có 1 góc vuông
(Dựa vào DHNB thứ 4: Hình thoi có một góc vuông là hình vuông)
Do đó: Để tứ giác ANMP là hình vuông thì: M phải là giao điểm của phân giác góc A và cạnh BC; đồng thời tứ giác ANMP có một góc vuông tại A(kết hợp kết quả câu b và c)
Hok tốt ~
a: Xét ΔBAC có BN/BA=BM/BC
nên NM//AC và NM=AC/2
=>NM//AP và NM=AP
=>ANMP là hình bình hành
mà góc NAP=90 độ
nên ANMP là hình chữ nhật
b: Xét tứ giác CMNP có
NM//CP
NM=CP
Do đó: CMNP là hình bình hành
=>CN cắt MP tại trung điểm của mỗi đường
=>E là trung điểm của NC
1,de dang chung minh duoc la hinh chu nhat
2/ gọi o là giao điểm của am va np
vi tam giac vuong ahm co oh la duong trung tuyen nen oh=am/2
ma np=am nen oh cung bang np/2
do do tam giac nhp vuong tai h
3.np ngan nhat <=>am ngan nhat
<=>am la duong cao
<=>m trùng với h
<=> m là giao điểm của đường cao kẻ từ a với bc
a) Xét tứ giác ADME có
AD//ME
DM//AE
Do đó: ADME là hình bình hành
b) Xét ΔEMC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)
nên ΔEMC cân tại E
Suy ra: EM=EC
Ta có: AE+EC=AC(E nằm giữa A và C)
mà AE=DM(AEMD là hình bình hành
mà EM=EC(cmt)
nên AC=MD+ME
cho mình hỏi ngu tí là ở câu b đó ạ,từ đâu mà suy ra được góc EMC = C(=B) ạ :((
Mink trình bày theo ý hiểu nhé
Vì MN // AC và MP // AB, ta có các cặp góc tương đương:
=>Góc MNP = Góc BAC (do MN // AC và MP // AB)
=>Góc ANM = Góc ABC (do MN // AC và tam giác ANM là tam giác đồng dạng với tam giác ABC)
=>Góc NPA = Góc MAC (do MP // AB và tam giác MNP là tam giác đồng dạng với tam giác MAB)
Ta có cặp góc tương đương: Góc PAM = Góc CAB (do MP // AB)
=> cặp góc đối nhau: Góc MNP = Góc BAC và Góc PAM = Góc CAB; Góc MNP = Góc PAM và Góc NPA = Góc ANM.
Vậy tứ giác ANMP là hình bình hành.
b) Để đoạn thẳng NP là nhỏ nhất, điểm M nằm ở trung điểm của BC.
Khi M nằm ở trung điểm của BC (hay AM = MC), ta có tứ giác ANMP là hình bình hành với đường chéo NP.
Trong hình bình hành, đoạn thẳng NP (đoạn chéo) là cực tiểu khi nó bằng chiều cao kẻ từ đỉnh A xuống đoạn thẳng BC. Khi M nằm ở trung điểm của BC, thì AM = MC, tức là đoạn thẳng NP chính là chiều cao của tam giác ABC kẻ từ đỉnh A xuống BC.
Vậy để NP là nhỏ nhất, điểm M phải nằm ở trung điểm của BC.
a) Ta có ngay AH.BC = AB.AC \(\left(=\frac{1}{2}S_{ABC}\right)\)
b) Xét tứ giác NMPA có 3 góc vuông nên NMPA là hình chữ nhật.
c) Ta có ngay \(\Delta MPC\sim\Delta AHC\left(g-g\right)\Rightarrow\frac{MP}{AH}=\frac{PC}{HC}\Rightarrow\frac{NA}{PC}=\frac{AH}{HC}\)
Lại có \(\widehat{NAH}=\widehat{PCM}\) (Cùng phụ với góc HAC)
\(\Rightarrow\Delta NAH\sim\Delta PCH\left(c-g-c\right)\Rightarrow\widehat{NHA}=\widehat{PHC}\)
Vậy nên \(\widehat{NHP}=\widehat{NHA}+\widehat{AHP}=\widehat{PHC}+\widehat{AHP}=\widehat{AHC}=90^o\)
d) Dp ANMP là hình chữ nhật nên NP = AM
Lại có AM là đường xiên nên \(AM\ge AH\Rightarrow NP\ge AH\)
Vậy NP ngắn nhất khi M trùng H.
a,b ko khó nên bạn tự giải nha
c)Gọi O la giao điểm của NP và AM
=> O là trung điểm của AM và OM=OA=ON=OP
Xét tam giác AHM vuông tại H
Có O là td của AM (cmt)
=>HO la đường trung tuyến ứng với cạnh huyền AM
=>HO=OA=OM
mà OM=OA=OP=ON (cmt)
=>HO=OP=ON=1/2NP
Xét tam giác NHP
có HO=OP=ON=1/2NP(cmt)
=>tam giác NHP vuông tại H