Cho các số thực không âm x, y thỏa mãn x2 + 4y=8. Tìm giá trị nhỏ nhất của biểu thức P= x + y + 10/(x+y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(P^2=\left(x+2y\right)^2=x^2+4xy+4y^2\\ =x^2+y^2+4xy+3y^2\ge x^2+y^2=4\\ \Rightarrow P_{min}=2\Leftrightarrow x=2;y=0\)
Đs....
Ta có x + y = 2 ⇒ y = 2 - x ≥ 0 ⇒ 0 ≤ x ≤ 2 . Thay y = 2 - x và biểu thức P ta được
P = 1 3 x 3 + x 2 + 2 - x 2 - x + 1 = 1 3 x 3 + 2 x 2 - 5 x + 5 = f x
với x ∈ 0 ; 2
Đạo hàm f ' x = x 2 + 4 x - 5 = 0 ⇔ x = 1 x = - 5
Do x ∈ 0 ; 2 nên loại x = -5
f 1 = 7 3 ; f 0 = 5 ; f 2 = 17 3
Vậy m i n x ∈ 0 ; 2 P = m i n x ∈ 0 ; 2 f x = 7 3 khi và chỉ khi x = 1
Đáp án B
\(P=\left(x^2+y^2\right)^2-2x^2y^2-4xy+3=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2-4xy+3\)
\(=\left(16-2xy\right)^2-2x^2y^2-4xy+3=2x^2y^2-68xy+259\)
\(4=x+y\ge2\sqrt[]{xy}\Rightarrow0\le xy\le4\)
Đặt \(xy=a\Rightarrow0\le a\le4\)
\(P=2a^2-68a+259=259-2a\left(34-a\right)\le259\)
\(P_{max}=259\) khi \(a=0\) hay \(\left(x;y\right)=\left(4;0\right);\left(0;4\right)\)
\(P=\left(2a^2-68a+240\right)+19=2\left(4-a\right)\left(30-a\right)+19\ge19\)
\(P_{min}=19\) khi \(a=4\) hay \(x=y=2\)
\(x+y=1\ge2\sqrt{xy}\Rightarrow xy\le\frac{1}{4}\)
=> \(A=x^3+y^3=\left(x+y\right)^3-3xy.\left(x+y\right)\ge1^2-3\cdot\frac{1}{4}\cdot1=\frac{1}{4}\)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{2}\)
vậy ...
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1-3xy\ge1-3.\frac{1}{4}=\frac{1}{4}\)
Dấu \(=\)khi \(x=y=\frac{1}{2}\).
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$P^2\leq (x+y)[(29x+3y)+(29y+3x)]=32(x+y)^2\leq 32.(x^2+y^2)(1+1)=64(x^2+y^2)\leq 64.2=128$
$\Rightarrow P\leq 8\sqrt{2}$
Vậy $P_{\max}=8\sqrt{2}$
Lời giải:
Áp dụng BĐT AM-GM:
$12=x^2+4+4y\geq 2\sqrt{4x^2}+4y=4x+4y=4(x+y)$
$\Rightarrow x+y\leq 3$
Tiếp tục áp dụng BĐT AM-GM:
$P=x+y+\frac{10}{x+y}=(x+y)+\frac{9}{x+y}+\frac{1}{x+y}$
$\geq 2\sqrt{(x+y).\frac{9}{x+y}}+\frac{1}{x+y}$
$=6+\frac{1}{x+y}\geq 6+\frac{1}{3}=\frac{19}{3}$ (do $x+y\leq 3$)
Vậy $P_{\min}=\frac{19}{3}$
Giá trị này đạt tại $x=2; y=1$