K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

a) Xét ΔABCΔABC có:

AB=AC(gt)AB=AC(gt)

=> ΔABCΔABC cân tại A.

=> ˆABC=ˆACBABC^=ACB^ (tính chất tam giác cân).

Ta có:

{ˆABM+ˆABC=1800ˆACN+ˆACB=1800{ABM^+ABC^=1800ACN^+ACB^=1800 (các góc kề bù).

Mà ˆABC=ˆACB(cmt)ABC^=ACB^(cmt)

=> ˆABM=ˆACN.ABM^=ACN^.

Xét 2 ΔΔ ABMABM và ACNACN có:

AB=AC(gt)AB=AC(gt)

ˆABM=ˆACN(cmt)ABM^=ACN^(cmt)

BM=CN(gt)BM=CN(gt)

=> ΔABM=ΔACN(c−g−c)ΔABM=ΔACN(c−g−c)

=> AM=ANAM=AN (2 cạnh tương ứng).

b) Theo câu a) ta có AM=AN.AM=AN.

=> ΔAMNΔAMN cân tại A.

=> ˆM=ˆNM^=N^ (tính chất tam giác cân)

Xét 2 ΔΔ vuông BMEBME và CNFCNF có:

ˆMEB=ˆNFC=900(gt)MEB^=NFC^=900(gt)

BM=CN(gt)BM=CN(gt)

ˆM=ˆN(cmt)M^=N^(cmt)

=> ΔBME=ΔCNFΔBME=ΔCNF (cạnh huyền - góc nhọn)

12 tháng 10 2021

a: Xét ΔABC và ΔAED có 

AB=AE

\(\widehat{BAC}=\widehat{EAD}\)

AC=AD

Do đó: ΔABC=ΔAED

26 tháng 12 2016

 xét tam giác EAB và tam giác DAC có : 
AB=AC ( tam giác ABC cân tại A ) 
góc EAB = góc DAC (đối đỉnh ) 
EA=AD (cmt) 
-> tam giác EAB=tam giác DAC ( c.g.c) 
-> góc EBA = góc DCA ( cặp góc tương ứng ) 
-> ED=DC ( cặp cạnh tương ứng ) 
*) tam giác ABC cân tại A -> góc B = góc C 
mà góc EBA=góc DCA -> góc EBC= góc DCB 
-> tan giác IBC cân tại I -> IB=IC 
**) IB=IC ( cmt ) 
mà EB=DC 
-> ID=IE 

 tam giác AED có AE=AD 
-> tam giác AED cân tại A -> góc AED = góc EDA (1) 
góc B = góc C (cmt) (2) 
góc EAD = góc BAC ( đối đỉnh ) (3) 
từ (1), (2), (3) -> góc AED = góc ACB 
mà 2 góc ở vị trí so le trong -> ED//BC 
 ED cắt IA tại H 
xét tam giác IEA và tam giác IDA (cm tương tự ) 2 tam giác = nhau theo trường hợp cạnh góc cạnh 

-> I,H,A thẳng hàng (4) 
vì ED//BC . 
M là trung điểm của BC -> M cũng là trung điểm của ED 
-> H , A , M thằng hàng (5) 
từ (4) và (5) -> I ,A,M thẳng hàng 

26 tháng 12 2016

cám ơn "le anh tu"

a: Xét ΔABM và ΔADM có

AB=AD

AM chung

BM=DM

Do đó: ΔABM=ΔADM

16 tháng 2 2022

a) Xét tam giác ABD và tam giác ACD:

AD chung.

AB = AC (gt).

BD = CD (D là trung điểm của BC).

\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)

b) Xét tam giác ABC: AB = AC (gt).

\(\Rightarrow\Delta ABC\) cân tại A.

Mà AD là trung tuyến (D là trung điểm của BC).

\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).

Xét tam giác MAD và tam giác NAD:

AD chung.

AM = AN (gt).

\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).

\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)

\(\Rightarrow\) DM = DN (2 cạnh tương ứng).

c) Xét tam giác ADC và tam giác EDB:

DC = DB (D là trung điểm của BC).

AD = ED (gt).

\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).

\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)

\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).

\(\Rightarrow\) AC // BE.

Mà \(DK\perp BE\left(gt\right).\)

\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)

Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)

Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)

\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)

Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.

1 tháng 12 2021

Xét ΔMAE và ΔMCB có:

         MA = MC (M là trung điểm của AC)

          ∠AME = ∠CMB (2 góc đối đỉnh)

          ME = MB (gt)

⇒ ΔMAE = ΔMCB (c.g.c)

⇒ AE = BC (2 cạnh tương ứng) (1)

Xét ΔNAF và ΔNBC có:

      NA = NB (N là trung điểm của AB)

      ∠ANF = ∠BNC (2 góc đối đỉnh)

       NF = NC (gt)

⇒ ΔNAF = ΔNBC (c.g.c)

⇒ AF = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) ⇒ AE = AF

Ta có: ΔMAE = ΔMCB (cmt)

⇒ ∠MAE = ∠MCB (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AE // BC (3)

Ta có: ΔNAF = ΔNBC (cmt)

⇒ ∠NAF = ∠NBC (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AF // BC (4)

Từ (3) và (4) ⇒ 3 điểm E, A, F thẳng hàng

22 tháng 12 2016

A B C E D M N 1 1

Giải:
Xét \(\Delta EAB,\Delta CAD\) có:
\(AE=AC\left(gt\right)\)

\(\widehat{EAB}=\widehat{CAD}\) ( đối đỉnh )

\(AB=AD\left(gt\right)\)

\(\Rightarrow\Delta EAB=\Delta CAD\left(c-g-c\right)\)

\(\Rightarrow\widehat{E_1}=\widehat{C_1}\) ( góc t/ứng )

\(\Rightarrow BE=CD\) ( cạnh t/ứng )

\(\Rightarrow\frac{1}{2}BE=\frac{1}{2}CE\)

\(\Rightarrow EM=NC\)

Xét \(\Delta MEA,\Delta NCA\) có:
\(EM=NC\left(cmt\right)\)

\(\widehat{E_1}=\widehat{C_1}\)

\(AE=AC\left(gt\right)\)

\(\Rightarrow\Delta MEA=\Delta NCA\left(c-g-c\right)\)

\(\Rightarrow AM=AN\) ( cạnh t/ứng )

\(\Rightarrowđpcm\)

23 tháng 12 2016

cau nay cung dung

22 tháng 12 2016

mình làm thế này thôi nha

còn hình bạn tự vẽ

Gt: Tam giác ABC,AD=AB,AE=AC. M ,N lần lượt là trung điểm của BE và CD

Kl: C/m: AM=AN

Xét tam giác AEB và tam giác ACD có:

AE=AC(gt)

AD=AB(gt)

Góc A1= góc A2(đối đỉnh)

Suy ra tam giác AEB=tam giác ACD(c-g-c)

Suy ra AE=BC(đpcm)

k cho mình nha thanks

22 tháng 12 2016

\(BD\text{ }\Omega\text{ }CE=A\)

AD = AB

AC = AE

=> BEDC là hình thang

\(BE\backslash\backslash DC;\text{ }BE=DC\)

Xét Δ MAC và Δ NAE

CA = CE

\(\frac{EN}{\widehat{XEN}}=\frac{\frac{1}{2}EB=\frac{1}{2}CD=MC}{\widehat{=ACM}}\)

=> Δ MAC = Δ NAE

=> MA = NA