K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2023

loading...  loading...  loading...  loading...  

12 tháng 12 2023

loading...  a) Tứ giác ABDC có:

M là trung điểm của BC (gt)

M là trung điểm của AD (gt)

⇒ ABDC là hình bình hành

Mà ∠BAC = 90⁰ (∆ABC vuông tại A)

⇒ ABDC là hình chữ nhật

b) Do ABDC là hình chữ nhật (cmt)

⇒ CD = AB (1)

Do B là trung điểm của AE (gt)

⇒ BE = AB = AE : 2 (2)

Từ (1) và (2) ⇒ CD = BE

Do ABDC là hình chữ nhật (cmt)

⇒ CD // AB

⇒ CD // BE

Tứ giác BEDC có:

CD // BE (cmt)

CD = BE (cmt)

⇒ BEDC là hình bình hành

c) Do ABDC là hình chữ nhật (cmt)

⇒ AC // BD

Do đó AC, BD, EK đồng quy là vô lý

Em xem lại đề nhé!

 

11 tháng 7 2023

a) Xét ∆CMA và ∆BMD:

Góc CMA= góc BMD (đối đỉnh)

MA=MD (gt)

MC=MB (M là trung điểm BC)

=> ∆CMA=∆BMD(c.g.c)

=> góc CAM = góc BDM và CA=DB

Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB

=> CABD là hình bình hành

Lại có góc CAB = 90 độ (gt)

=> ACDB là hình chữ nhật

b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA

Mà 2 góc này ở bị trí so le trong nên AE//DB

Lại có AE=BD(=CA)

=> AEBD là hình bình hành

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

nên ABDC là hình bình hành

mà góc BAC=90 độ

nên ABDC là hình chữ nhật

b,d: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

Suy ra: góc AFE=góc AHE=góc ABC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>góc MAC=góc ACB

=>góc MAC+góc EFA=90 độ

=>AM vuông góc với EF

c: Xét ΔADI có

H,M lần lượt là trung điểm của AI và AD

nên HM là đường trung bình

=>HM//DI

=>DI//BC

Xét ΔCIA có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCIA cân tại C

=>CI=CA=DB

=>BIDC là hình thang cân

a: Xét tứ giác ABDC có 

E là trung điểm của đường chéo BC

E là trung điểm của đường chéo AD

Do đó: ABDC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABDC là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AE là đường trung tuyến ứng với cạnh huyền BC

nên AE=BE=CE

Xét tứ giác AECF có 

N là trung điểm của đường chéo FE

N là trung điểm của đường chéo AC

Do đó: AECF là hình bình hành

mà AE=CE

nên AECF là hình thoi

a: Xét tứ giác BADC có

M là trung điểm chung của BD và AC

=>BADC là hình bình hành

Hình bình hành BADC có \(\widehat{ABC}=90^0\)

nên BADC là hình chữ nhật

b: Ta có: BADC là hình chữ nhật

=>BA//DC và BA=DC

Ta có: BA//DC

A\(\in\)BE

Do đó: AE//DC

Ta có:BA=DC

AE=AB

Do đó: AE=CD

Xét tứ giác AEDC có

AE//CD

AE=CD

Do đó: AEDC là hình bình hành

c: Ta có: E đối xứng B qua A

=>A là trung điểm của BE

Xét ΔDBE có

DA,EM là đường trung tuyến

DA cắt EM tại K

Do đó: K là trọng tâm của ΔDBE

Xét ΔDBE có 

K là trọng tâm của ΔDBE

DA là đường trung tuyến

Do đó: \(DA=3AK\)

mà DA=BC(ABCD là hình chữ nhật)

nên BC=3AK

22 tháng 12 2021

a: Xét tứ giác ABDC có

I là trung điểm của AD

I là trung điểm của BC

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

20 tháng 12 2022

a: Xét tứ giác ADCH có

M là trung điểm chung của AC và HD

góc AHC=90 độ

Do đó: ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

Do đó: ADHE là hình bình hành