Tìm x, y nguyên để:
3xy - 2x + y = 29
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, Ta có : 2xy + x + y = 7
=> 2(2xy + x + y) = 2 . 7
=> 4xy + 2x + 2y = 14
=> (4xy + 2x) + 2y + 1 = 14 + 1
=> 2x(2y + 1) + (2y + 1) = 15
=> (2x + 1)(2y + 1) = 15
=> 2x + 1;2y + 1 ∈ Ư(15) ∈ {-15;-5;-3;-1;1;3;5;15}
Vậy ta có bảng :
2x + 1 | -15 | -1 | -3 | -5 | 15 | 1 | 3 | 5 |
2y + 1 | -1 | -15 | -5 | -3 | 1 | 15 | 5 | 3 |
x | -8 | -1 | -2 | -3 | 7 | 0 | 1 | 2 |
y | -1 | -8 | -3 | -2 | 0 | 7 | 2 | 1 |
=> (x;y) = (-8;-1);(-1;-8);(-2;-3);(-3;-2);(7;0);(0;7);(1;2);(2;1)
a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}
Lời giải:
$3xy-2x-2y=24$
$\Rightarrow (3xy-2x)-2y=24$
$\Rightarrow x(3y-2)-2y=24$
$\Rightarrow 3x(3y-2)-6y=72$
$\Rightarrow 3x(3y-2)-2(3y-2)=76$
$\Rightarrow (3x-2)(3y-2)=76$
Vì $x,y$ nguyên nên $3x-2, 3y-2$ cũng là số nguyên. Do đo $3x-2, 3y-2$ là ước của 76.
Đến đây thì đơn giản rồi. Bạn chỉ cần xét các TH khác nhau của ước của 76.
Bài 1: Tìm x, y nguyên biết :
a) 4x + 2xy + y = 7
=> 2.x(y-2)+(y-2)=5
=> ( y-2)(2x+1)= 5
Ta có bảng sau:
2x+1 | -5 | -1 | 1 | 5 |
y-2 | -1 | -5 | 5 | 1 |
x | -3 | -1 | 0 | 2 |
y | 1 | -3 | 7 | 3 |
Điều kiện: t/m
Vậy:....
phần b và c tương tự
\(\Rightarrow18xy-12x+6y=174\\ \Rightarrow6x\left(3y-2\right)+6y-4=170\\ \Rightarrow6x\left(3y-2\right)+2y\left(3y-2\right)=170\\ \Rightarrow\left(3y-2\right)\left(3x+y\right)=85=1.85=\left(-1\right)\left(-85\right)=5.17=\left(-5\right)\left(-17\right)\)
\(-5\)
Vậy \(\left(x;y\right)=\left(28;1\right);\left(0;-5\right)\)
Ủa đề bài mình khác mà bn ơi