K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2016

em xin chịu

19 tháng 9 2017

Đề có thiếu ko vậy bạn

19 tháng 9 2017

Tính nhanh:

2 . 31 . 12 + 4 . 6 . 42 + 8 . 27 . 3

20 tháng 11 2015

câu hỏi tương tự

huhu

tick

tick

19 tháng 9 2017

\(S=1.4+2.5+3.6+4.7+...+n\left(n+3\right)\)

\(S=4+10+18+21+...+n\left(n+3\right)\)

S gồm có :

\(\dfrac{n\left(n+3\right)-4}{4}+1\) ( số hạng )

Tổng S là:

\(S=\left[n\left(n+3\right)+4\right].\left[\dfrac{n\left(n+3\right)-4}{4}+1\right]:2\)

\(S=\left(n^2+3n+4\right)\left[\dfrac{n^2+3n-4}{4}+1\right].\dfrac{1}{2}\)

\(S=\dfrac{n^2+3n+4}{2}.\dfrac{n^2+3n}{4}\)

20 tháng 9 2017

mk thấy bn làm sai rồi , khoảng cách giữa các số hạng có đều nhau đâu

22 tháng 5 2021

Ta thấy: 1.4 = 1.(1 + 3)

2.5 = 2.(2 + 3)

3.6 = 3.(3 + 3)

4.7 = 4.(4 + 3)

…….

n(n + 3) = n(n + 1) + 2n

Vậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n

C = 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n

C = [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)

⇒ 3C = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n) 

3C = 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n)

3C = n(n + 1)(n + 2) + \frac{3\left(2n\ +\ 2\right)n}{2}

⇒ C = \frac{n(n+1)(n+2)}{3} + \frac{3\left(2n\ +\ 2\right)n}{2} = \frac{n(n+1)(n+5)}{3}

28 tháng 8 2015

Tính S = 1.4 + 2.5 + 3.6 + 4.7 + … + n(n + 3)
Lời giải
Ta thấy: 1.4 = 1.(1 + 3)
2.5 = 2.(2 + 3) 
3.6 = 3.(3 + 3) 
4.7 = 4.(4 + 3)
…….
n(n + 3) = n(n + 1) + 2n
Vậy S = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n
= 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n
= [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)
3S = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n) =
= 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n) =
= n(n + 1)(n + 2) +S

6 tháng 7 2019

I love you Thư 😘😘😘

6 tháng 7 2019

Love!!!

22 tháng 5 2021

Ta thấy: 1.4 = 1.(1 + 3)

2.5 = 2.(2 + 3)

3.6 = 3.(3 + 3)

4.7 = 4.(4 + 3)

…….

n(n + 3) = n(n + 1) + 2n

Vậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n

C = 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n

C = [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)

⇒ 3C = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n) 

3C = 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n)

3C = n(n + 1)(n + 2) + \frac{3\left(2n\ +\ 2\right)n}{2}

⇒ C = \frac{n(n+1)(n+2)}{3} + \frac{3\left(2n\ +\ 2\right)n}{2} = \frac{n(n+1)(n+5)}{3}

22 tháng 5 2021

Ta thấy: 1.4 = 1.(1 + 3)

2.5 = 2.(2 + 3)

3.6 = 3.(3 + 3)

4.7 = 4.(4 + 3)

…….

n(n + 3) = n(n + 1) + 2n

Vậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n

C = 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n

C = [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)

⇒ 3C = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n) 

3C = 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n)

3C = n(n + 1)(n + 2) + \frac{3\left(2n\ +\ 2\right)n}{2}

⇒ C = \frac{n(n+1)(n+2)}{3} + \frac{3\left(2n\ +\ 2\right)n}{2} = \frac{n(n+1)(n+5)}{3}