Tìm 2 nghiệm của đa thức sau F(x)= x10 - 9x9 + 9x8 - 9x7 +....+ 9x2 - 9x+8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bảng cửu chương 9 là ok
kết quả lần lượt là:
9;18;27;36;45;54;63;72;81;90
Kik nha
thank you
9 x 1 = 9
9 x 2 = 18
9 x 3 = 27
9 x 4 = 36
9 x 5 = 45
9 x 6 = 54
9 x 7 = 63
9 x 8 = 72
9 x 9 = 81
9 x 10 = 90
(a - 19.99) : 2 = 1 x 1 + 1 x 2 + 1 x 3 + 1 x 4 +...+ 9 x 7 + 9 x 8 + 9 x 9
(a - 19.99) : 2 = 1 x (1 + 2 + 3 + 4 + 5 + 6 + 7 )
So dau hang deu la 9
ket qua dac biet la 0+ 9 = 9
1 + 8= 9
2 + 7 = 9
3 + 6= 9
4 + 5= 9
5 + 4 = 9
6 + 3 =9
7+ 2= 9
9 + 1 = 9
9 + 0 = 9
a) \(f\left(x\right)=x^2+7x-8=0\)
\(\Leftrightarrow f\left(x\right)=x^2-x+8x-8=0\)
\(\Leftrightarrow f\left(x\right)=\left(x^2-x\right)+\left(8x-8\right)=0\)
\(\Leftrightarrow f\left(x\right)=x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x+8\right)=0\)
\(\Rightarrow x-1=0\) hoặc \(x+8=0\)
Nếu \(x-1=0\Rightarrow x=1\)
Nếu \(x+8=0\Rightarrow x=-8\)
Vậy đa thức f(x) có nghiệm là 1 và -8
b) \(k\left(x\right)=5x^2+9x+4=0\)
\(\Leftrightarrow k\left(x\right)=5x^2+5x+4x+4=0\)
\(\Leftrightarrow k\left(x\right)=\left(5x^2+5x\right)+\left(4x+4\right)=0\)
\(\Leftrightarrow k\left(x\right)=5x\left(x+1\right)+4\left(x+1\right)=0\)
\(\Leftrightarrow k\left(x\right)=\left(x+1\right)\left(5x+4\right)=0\)
\(\Rightarrow x+1=0\) hoặc \(5x+4=0\)
Nếu \(x+1=0\Rightarrow x=-1\)
Nếu \(5x+4=0\Rightarrow x=-\frac{4}{5}\)
Vậy đa thức k(x) có nghiệm là -1 và -4/5
2\(x^3\) - 8\(x^2\) + 9\(x\) = 0
\(x\)(2\(x^2\) - 8\(x\) + 9) = 0
\(\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)
2\(x^2\) - 8\(x\) + 9 = 0
2\(x^2\) - 4\(x\) - 4\(x\) + 8 + 1 = 0
(2\(x^2\) - 4\(x\)) - (4\(x\) - 8) + 1 = 0
2\(x\)(\(x-2\)) - 4(\(x-2\)) + 1 = 0
2(\(x-2\))(\(x\) - 2) + 1 = 0
2(\(x-2\))2 + 1 = 0 (vô lí) vì (\(x\) - 2)2 ≥ 0 \(\forall\)\(x\) ⇒ 2.(\(x-2\))2 +1 ≥ 1 > 0
Vậy 2\(x^3\) - 8\(x^2\) + 9\(x\) = 0 có nhiều nhất 1 nghiệm và đó là \(x\) = 0
Để F(x) có nghiệm <=> x^10 - 9x^9 + ... + 9x^2 - 9x +8 = 0
<=> (x^10 - x^9) - (8x^9 - 8x^8) + (x^8 - x^7) - ... + (x^2 - x) - (8x - 8) = 0
<=> x^9(x - 1) - 8x^8(x - 1) + ... + x(x - 1) - 8(x - 1) = 0
<=> (x^9 - 8x^8 + ... + x - 8)(x - 1) = 0
<=> ( (x^9 - 8x^8) + (x^7 - 8x^6) + ... + (x - 8) )(x - 1) = 0
<=> (x^8 + x^6 + ... + 1)(x - 8)(x - 1) = 0
Có nghiệm là 8 và 1