Tìm m để đường thẳng y= x - 2 cắt đường thẳng y=(m-2)x +1 tại điểm nằm bên trái trục tung
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm x 2 = (m – 2)x + 3m ↔ x 2 − (m – 2)x − 3m = 0 (*)
Đường thẳng d cắt (P) tại hai điểm phân biệt nằm hai phía trục tung
↔ Phương trình (*) có hai nghiệm trái dấu
↔ ac < 0 ↔ −3m < 0 ↔ m > 0
Đáp án: D
Xét pt hoành độ gđ của parabol và d có:
\(x^2=x+m-1\)
\(\Leftrightarrow x^2-x+1-m=0\) (1)
Để (P) và (d) cắt nhau tại hai điểm pb bên trái trục tung
\(\Leftrightarrow\) Pt (1) có hai nghiệm âm pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S=1< 0\left(vl\right)\\P=1-m>0\end{matrix}\right.\)\(\Rightarrow\) Không tồn tại m để (d) cắt (P) tại hai điểm pb ở bên trái trục tung
Vậy...
Phương trình hoành độ giao điểm là:
\(x^2-x-m+1=0\)
a=1; b=-1; c=-m+1
\(\Delta=b^2-4ac\)
\(=\left(-1\right)^2-4\left(-m+1\right)\)
\(=1+4m-4\)
=4m-3
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow m>\dfrac{3}{4}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-1\right)}{1}=1\\x_1x_2=\dfrac{c}{a}=\dfrac{-m+1}{1}=-m+1\end{matrix}\right.\)
Để (d) cắt (P) tại hai điểm phân biệt nằm ở bên trái trục tung thì
\(\left\{{}\begin{matrix}m>\dfrac{3}{4}\\x_1+x_2< 0\left(loại\right)\\x_1x_2>0\end{matrix}\right.\)
Vậy: \(m\in\varnothing\)
Giao của d và d1 là điểm có hoành độ thỏa mãn :
2x + 3 = ( m + 1) x + 5
2x - ( m + 1) x = 5 - 3
x ( 2 - m - 1) = 2
( 1-m) x = 2
x = 2 : ( 1-m) đk m # 1
Để d và d1 cắt nhau về bên trái trục tung thì \(\dfrac{2}{1-m}\) < 0
1- m < 0 => m > 1
1. Giả sử hai đường thẳng cắt nhau tại điểm M(x0; y0) trên trục tung
=> x0 = 0 => Thay toạ độ của M vào 2 đường thẳng ta có: (d): y0 = m và (d'): y0 = 3 - 2m
Xét phương trình hoành độ giao điểm: m = 3 - 2m ⇔ 3m = 3 ⇔ m = 1
=> Với m = 1 thì 2 đường thẳng cắt nhau tại điểm trên trục tung
2. Với m = 1 => y0 = 1 => 2 đường thẳng cắt nhau tại điểm M(0; 1)
PT hoành độ giao điểm: \(x-2=\left(m-2\right)x+1\)
\(\Leftrightarrow\left(m-3\right)x=-3\Leftrightarrow x=-\dfrac{3}{m-3}\)
Vì giao nhau bên trái trục tung nên \(x< 0\Leftrightarrow m-3>0\left(-3< 0\right)\Leftrightarrow m>3\)
Vậy \(m>3\) thỏa yêu cầu đề