Cho tam giác ABC có AB = AC và Aˆ 90o . Gọi H là trung điểm của cạnh BC.
a) Chứng minh ∆AHB = ∆AHC và AH là tia phân giác của góc BAC.
b) Vẽ HI ⊥ AB tại I. Trên cạnh AC lấy điểm K sao cho AK = AI. Chứng minh: HK ⊥ AC.
c) Gọi M là trung điểm của đoạn thẳng KC. Trên tia đối của tia MH lấy điểm N sao ccho NM
= HM. Chứng minh: NK // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là tia phân giác
b: Xét ΔAIH và ΔAKH có
AI=AK
\(\widehat{IAH}=\widehat{KAH}\)
AH chung
Do đó; ΔAIH=ΔAKH
Suy ra: \(\widehat{AIH}=\widehat{AKH}=90^0\)
hay HK\(\perp\)AC
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Ta có: ΔABC cân tại A
ma AH là đường trung tuyến
nên AH là đường phân giác
b: Xét tứ giác ABMC có
H là trung điểm của AM
H là trung điểm của BC
Do đó: ABMC là hình bình hành
Suy ra: AB//MC
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường phân giác
b: Xét tứ giác ABMC có
H là trung điểm của AM
H là trung điểm của BC
Do đó: ABMC là hình bình hành
Suy ra: AB//MC
c: Ta có: ΔBCD cân tại B
mà BK là đường cao
nên BK là đường phân giác
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
Suy ra: AH là tia phân giác của góc BAC
a) Xét t/g AHB & t/g AHC :
* AB = AC ( gt )
* BH = CH ( H là trung điểm )
* AH chung
=> t/g AHB = t/g AHC
b )
*Ta có :
Góc AHB = AHC ( t/g AHB = t/g AHC )
mà AHB + AHC = 180 ( kb )
=> AHB = AHC = 180 /2= 90
=> BH vuông góc BC
* Góc BAH = CAH ( t/g AHB = t/g AHC )
=> AH là p/g BAC
c)
Xét t/g AOE và t/g AOF :
* AE = AF ( gt )
* AO chung
* Góc EAO = FAO ( t/g _=_)
=> T/g AOE = t/g AOF
d) ....
Buồn buồn làm chơi ..
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
b: Xét tứ giác ABMC có
H là trung điểm của AM
H là trung điểm của BC
Do đó: ABMC là hình bình hành
Suy ra: AB//MC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: Xét ΔMBC có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMBC cân tại M
c: Xét ΔAIH vuông tại I và ΔAKH vuông tại K co
AH chung
góc IAH=góc KAH
=>ΔAIH=ΔAKH
=>HI=HK
d: AI=AK
HI=HK
=>AH là trung trực của IK