K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

Answer:

\(7x^3+3x^2-3x+1=0\)

\(\Rightarrow7x^3+7x^2-4x^2-4x+x+1=0\)

\(\Rightarrow7x^2.\left(x+1\right)-4x.\left(x+1\right)+\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right).\left(7x^2-4x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\7x^2-4x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\7x^2-4x+1=0\text{(Vô lý)}\end{cases}}\)

20 tháng 5 2022

|9x−8|+|7x−6|+|5x−4|+|3x−2|+x=0(1)|9x−8|+|7x−6|+|5x−4|+|3x−2|+x=0(1).

Vì |9x−8|+|7x−6|+|5x−4|+|3x−2|>0∀x|9x−8|+|7x−6|+|5x−4|+|3x−2|>0∀x

Nên từ (1) ⇒x<0⇒9x−8;7x−6;5x−4;3x−2<0⇒x<0⇒9x−8;7x−6;5x−4;3x−2<0.

Phương trình (1) trở thành:

8−9x+6−7x+4−5x+2−3x+x=0⇔20−23x=0⇔x=20/23>0(ktm)

20 tháng 5 2022

Tham khảo vào đi .-.

1 tháng 1 2016

1/ 0, 71

2/ Tương tự 2 câu 1, 3 nhé!

3/ 11,25

Tick đúng nha! Thanks!

17 tháng 8 2016

1,x=6

3,x=-9

19 tháng 8 2018

Giải PT : x2 - 3x + 1 = 0. thay x vào là giải đc

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

9 tháng 1

13 tháng 11 2021

a) \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\5x-15=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=3\end{matrix}\right.\)

b) \(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\3x-9=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=3\end{matrix}\right.\)

13 tháng 11 2021

a. \(\left[{}\begin{matrix}2x+3=0\\5x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=3\end{matrix}\right.\)

b. \(\left[{}\begin{matrix}3x+1=0\\3x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=3\end{matrix}\right.\)

\(\dfrac{x}{x^2+x+1}=\dfrac{1}{4}\)

=>\(x^2+x+1=4x\)

=>\(x^2-3x+1=0\)

\(\dfrac{x^5-3x^3-10x+12}{x^4+7x^2+15}\)

\(=\dfrac{x^5-3x^4+x^3+3x^4-9x^3+3x^2+5x^3-15x^2+5x+12x^2-36x+12+21x}{x^4+7x^2+15}\)

\(=\dfrac{x^3\left(x^2-3x+1\right)+3x^2\left(x^2-3x+1\right)+5x\left(x^2-3x+1\right)+12\left(x^2-3x+1\right)+21x}{x^4+7x^2+15}\)

\(=\dfrac{21x}{x^4-3x^3+x^2+3x^3-9x^2+3x+15x^2-45x+15+42x}\)

\(=\dfrac{21x}{x^2\left(x^2-3x+1\right)+3x\left(x^2-3x+1\right)+15\left(x^2-3x+1\right)+42x}\)

\(=\dfrac{21x}{42x}=\dfrac{1}{2}\)