K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

vẽ đường cao AH chung của tam giác AMB và AMC 

SAMB=\(\dfrac{1}{2}\)BM.AH

SAMC=\(\dfrac{1}{2}\)CM.AH

Vì AM là đường trung tuyến nên BM=MC

Do đó:SAMC=SAMB

 

 ( cái đường cao AH vuông góc với BC ă)

3 tháng 9 2019

Kẻ đường cao AH

Ta có: SAMB = 0.5.BM.AH

SAMC = 0.5.CM.AH

Mà BM = CM (gt)

Þ SAMB = SAMC (ĐPCM)

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...

10 tháng 3 2023

Đề có sai không bạn , nếu `Delta ABC` là tam giác thường thôi thì không cm đc đâu ạ 

1 tháng 5 2019

Kẻ đường cao AH.

Ta có:

Giải bài 18 trang 121 Toán 8 Tập 1 | Giải bài tập Toán 8

Mà BM = CM (vì AM là trung tuyến)

⇒ SAMB = SAMC (đpcm).

21 tháng 8 2019

Lam truoc cau a nhe,toi roi

a.Vi tu giac AFME co 3 goc vuong va 2 duong cheo vuong goc voi nhau nen AFDE la hinh vuong.

Goi giao diem giua 2 duong cheo AM va EF do la Q 

Suy ra:AQ=FQ nen tam giac AQF la tam giac vuong can hay \(\widehat{AQF}=45^0\left(1\right)\)

Tu giac QFKM co 3 goc vuong va MQ=FQ nen QFKM la hinh vuong.

Suy ra:FK=MK

Ta co:\(FK^2=MK.KC\Rightarrow FK=KC\)

Nen tam giac FKC la tam giac vuong can hay \(\widehat{C}=45^0\left(2\right)\)

Tu (1) va (2) suy ra:AM=MC

Hay AM la duong trung tuyen cua tam giac ABC.

Xét ΔABC có 

AM là đường trung tuyến

AM là đường phân giác

Do đó: ΔABC cân tại A

16 tháng 4 2022

\(\text{Xét }\Delta ABC\text{ có:}\)

\(\left\{{}\begin{matrix}AM\text{ là đường phân giác(gt)}\\AM\text{ là đường trung tuyến(gt)}\end{matrix}\right.\)

\(\Rightarrow\Delta ABC\text{ cân tại A}\)

 

#\(N\)

`a,` Vì Tam giác `ABC` cân tại `A -> AB = AC, `\(\widehat{B}=\widehat{C}\) 

`AM` là đường trung tuyến Tam giác `ABC -> BM = MC`

Xét Tam giác `ABM` và Tam giác `ACM` có:

`AB = AC`

\(\widehat{B}=\widehat{C}\)

`BM = MC`

`->` Tam giác `ABM =` Tam giác `ACM (c-g-c)`

`->`\(\widehat{BAM}=\widehat{CAM}\) `(2` góc tương ứng `)`

`-> AM` là phân giác của \(\widehat{BAC}\) 

 

28 tháng 2 2023

Xét tam giác \(\Delta ABM\) và \(\Delta ACM\)

\(AB=AC\left(gt\right)\)

\(\widehat{ABM}=\widehat{ACM}\left(gt\right)\)

\(AM\) chung

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.g.c\right)\)

Từ tam giác bằng nhau trên suy ra:

\(\widehat{BAM}=\widehat{CAM}\) nên \(AM\) là phân giác \(\widehat{BAC}\)

Là phân giác của \(\Delta ABC\)