K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 2 2021

ĐKXĐ: \(x\ge-2\)

\(\Leftrightarrow x^3+3x\left(x+2\right)-4\left(x+2\right)\sqrt{x+2}=0\)

Đặt \(\sqrt{x+2}=y\ge0\) pt trở thành:

\(x^3+3xy^2-4y^3=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+4y^2\right)=0\)

\(\Leftrightarrow x=y\Leftrightarrow\sqrt{x+2}=x\) (\(x\ge0\))

\(\Leftrightarrow x^2=x+2\Leftrightarrow x=2\)

26 tháng 2 2021

\(ĐKXĐ:x\ge-2\)

\(\Leftrightarrow x^3+3x^2+6x-4x\sqrt{x+2}-8\sqrt{x+2}=0\Leftrightarrow4x^2-4x\sqrt{x+2}+8x-8\sqrt{x+2}+x^3-x\left(x+2\right)=0\Leftrightarrow4x\left(x-\sqrt{x+2}\right)+8\left(x-\sqrt{x+2}\right)+x\left(x-\sqrt{x+2}\right)\left(x+\sqrt{x+2}\right)=0\)\(\Leftrightarrow\left(x-\sqrt{x+2}\right)\left(x^2+x\sqrt{x+2}+4x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{x+2}=0\left(1\right)\\x^2+x\sqrt{x+2}+4x+8=0\left(2\right)\end{matrix}\right.\) Từ (1) \(\Rightarrow x=\sqrt{x+2}\left(x\ge0\right)\Rightarrow x^2=x+2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-1\left(L\right)\end{matrix}\right.\) Từ (2) \(\Rightarrow x^2+x\sqrt{x+2}+4x+8\ge\left(-2\right)^2+\left(-2\right)\sqrt{-2+2}+4\left(-2\right)+8=4>0\) \(\Rightarrow\) ko có x 

vậy...

NV
24 tháng 12 2020

\(\left[3\left(x-1\right)^2+6\right]\left(3+6\right)\ge\left[3\left(x-1\right)+6\right]^2\)

\(\Leftrightarrow3x^2-6x+9\ge x+5\)

\(\Rightarrow A\ge x^4-8x^2+2024=\left(x^2-4\right)^2+2008\ge2008\)

Dấu "=" xảy ra khi \(x=2\)

NV
24 tháng 12 2020

Có phát hiện ra lỗi sai trong bài làm trên ko? :D

31 tháng 5 2021

\(=>x^3=(\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)})^3\)

\(x^3=2\left(\sqrt{3}+1\right)-3.\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]^2.\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)

+\(3\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]^2\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]-2\left(\sqrt{3}-1\right)\)

\(x^3=\)

\(4-3\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)

\(x^3=4-3.\left[\sqrt[3]{4\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right].\)\(x\)

\(x^3=4-3\left[\sqrt[3]{4\left(3-1\right)}\right].x\)

\(x^3=4-3.2x\)

\(x^3=4-6x\)

thay \(x^3=4-6x\) vào A=>\(A=\left(4-6x+6x-5\right)^{2009}=\left(-1\right)^{2009}=-1\)

9 tháng 10 2021

a)=\(3x^3-15x^2+21x\)

b)\(=-2x^4y-10x^2y+2xy\)

c)\(=-x^3+6x^2+5x-4x^2+24x+20=-x^3+2x^2+29x+20\)

d)\(=2x^4-3x^3+4x^2-2x^2+3x-4=2x^4-3x^32x^2+3x-4\)

e)\(=x^2-4y^2\)

f)\(=-2x^2y^3+y-3\)

g)\(=3xy^4-\dfrac{1}{2}y^2+2x^2y\)

h)\(=9x^2-6x+1-7x^2-14=2x^2-6x-13\)

i)\(=x^2-x-3\)

j)\(=\left(x+2y\right)\left(x^2-2y+4y^2\right):\left(x+2y\right)=x^2-2y+4y^2\)

24 tháng 10 2021

Tại sao ý b có dấu - trước ngoặc đâu mà đổi dấu mong bn giải đáp

22 tháng 8 2021

bạn viết lại đề đi

22 tháng 8 2021

\(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}=5\)

dạ đây ạ

a: \(\dfrac{3x+2}{4}-\dfrac{3x+1}{3}=\dfrac{5}{6}\)

=>3(3x+2)-4(3x+1)=10

=>9x+6-12x-4=10

=>-3x+2=10

=>-3x=8

=>x=-8/3

b: \(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{9x-10}{4-x^2}\)

=>(x-1)(x-2)-x(x+2)=-9x+10

=>x^2-3x+2-x^2-2x=-9x+10

=>-5x+2=-9x+10

=>x=2(loại)

4 tháng 7 2021

\(pt\text{⇔}\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\text{⇔}x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\\ \text{⇔}17x=17\text{⇔}x=1\)

Vậy nghiệm của phương trình : \(S=\left\{1\right\}\)

Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2=27\)

\(\Leftrightarrow17x=17\)

hay x=1

Đề bài yêu cầu gì?

16 tháng 10 2021

\(a,=\left(x-5\right)\left(x+5\right)\\ b,=\left(x-3\right)^2\\ c,=\left(3x-2\right)\left(3x+2\right)\\ d,=\left(x+1\right)^2\\ e,=\left(x-10\right)\left(x+10\right)\)