K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2016

ta có với n=1: VT=1=VP

giả sử đúng với n=k, k thuộc N*

ta cần chứng minh đúng với n=k+1

thay vào ta dduocj: [k(k+1)]2/4+(k+1)3=[(k+1)(k+2)]^2/4

=> đpcm

phương pháp quy nạp

5 tháng 10 2019

hello minh anh ak 

5 tháng 10 2019

bitch

26 tháng 10 2016

a/ Nếu n chia hết cho 5 thì n(n+1)(n+2)(n+3)(n+4) chia hết cho 5 với mọi n

+ Nếu n chia 5 dư 1 thì n có dạng 5k+1 => n+4=5k+5=5(k+1) chia hết cho 5

+ Nếu n chia 5 dư 2 thì n có dạng n=5k+2 => n+3=5k+2+3=5(k+1) chia hết cho 5 

+ Nếu n chia 5 dư 3 thì n có dạng n=5k+3 => n+2 =5K+3+2=5(k+1) chia hết cho 5

+ Nếu n chia 5 dư 4 thì n có dạng n=5k+4 => n+1 = 5k+4+1=5(k+1) chia hết cho 5

=> Biểu thức rên chia hết cho 5 với mọi n

b/ 

+ Nếu n lẻ => n+1 chẵn và 3n+2 lẻ => (n+1)(3n+2) chẵn => chia hết cho 2

+ Nếu n chẵn => n+1 lẻ và 3n+2 chẵn => (n+1)(3n+2) chẵn => chia hết cho 2

=> biểu thức chia hết cho 2 với mọi n thuộc N

10 tháng 2 2020

Ta có\(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)

\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)=\frac{1}{15}-\frac{3}{25n+20}\)(1)

kết hợp điều kiện ta có \(\frac{3}{25n+20}\ge\frac{3}{25.2+20}=\frac{3}{70}>0\)

=> \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}< \frac{1}{15}\)(đpcm)

11 tháng 10 2018

\(\left(2.7\right)^n+1\)

\(=14^n+1^n⋮\left(14+1\right)=15\)

\(\Rightarrow\left(2.7\right)^n+1⋮3\)

27 tháng 2 2020

n^3 + 5n

= n^3 - n + 6n

= n(n^2 - 1) + 6n 

= n(n - 1)(n + 1) + 6n

(n-1)n(n+1) là tích của  3 stn liên tiếp

=> n(n-1)(n+1) chia hết cho 2 và 3 mà (2;3) = 1

=> n(n-1)(n+1) chia hết cho 6

có 6n chia hết cho 6

=> n(n-1)(n+1) + 6n chia hết cho 6

=> n^3 + 5n chia hết cho 6 với mọi n thuộc N