Cho Tam giác ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy điểm H sao cho BH=BA
a) Chứng minh tam giác ABD=tam giác HBD
b) chứng minh DH vuông góc BC
C) giả sử góc C=60 độ. Tính số đo góc BDC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABD\)và \(\Delta HBD\)có:
\(BA=BH\left(gt\right)\)
\(\widehat{ABD}=\widehat{HBD}\)(ad là tia phân giác của \(\widehat{B}\))
\(BD\)là cạnh chung
Do đó: \(\Delta ABD=\Delta HBD\left(c.g.c\right)\)
Bn tự vẽ hình nha
a/ xét 🔼ABD và🔼HDB có:
AB=HB(GT)
ABD=DBH(do bd là phân giác của góc b)
cạnh BD chung
=>🔼ABD=🔼HDB(C.G.C)
b/ ta có 🔼ABD=🔼HDB( theo a)
<=>BAD= BDH=90 độ
=> dh vuông góc với bc
c/ vì tam giác ABC vuông tại A=> góc b + góc c = 90 độ => góc b = 30 độ
Vì db là phân giác của góc b=> gócDBC=15 độ
Xét tam giác DBC có DBC+DCB+BDC=180 độ ( định lí tổng 3 góc)
=> BDC=180-60-15=105 độ
Đúng hơm bn
CM : a) Xét tam giác ABD và tam giác HBD
có AB = BD (gt)
góc DBA = góc HBD (gt)
BD : chung
=> tam giác ABD = tam giác HBD (c.g.c) (Đpcm)
b) Ta có : tam giác ABD = tam giác HBD (cm câu a)
=> góc A = góc DHB ( hai góc tương ứng)
Mà góc A =900 => góc DHB = 900
=> DH vuông góc với BC
c) Xét tam giác ABC có góc A = 900
=> góc B + góc C = 900 (t/c của 1 tam giác)
=> góc B = 900 - góc C = 900 - 360 = 540
Ta có : góc HBD = góc DBA = góc B/2 = 540/2 = 270
Xét tam giác ADE có A = 900
=> góc ADB + góc DBA = 900 (t/c của 1tam giác)
=> góc ADE = 900 - góc ADB = 900 - 270 = 630
(Em tự vẽ hình, ghi GT-KL nhé)
a) Xét \(\Delta ABD\)và \(\Delta HBD\)có:
AB = BH (gt)
^ABD = ^HBD (gt)
BD chung
=> \(\Delta ABD=\Delta HBD\left(c.g.c\right)\)
b) Ta có: \(\Delta ABD=\Delta HBD\left(cmt\right)\)
=> ^BAD = ^BHD = 90o
=> \(DH\perp BC\)
c)
\(\Delta ABC\)có : ^BAC + ^ABC + ^CBA = 180o
=> ^ABC = 180o- 90o- 36o = 54o
=> ^DBC = 1/2 ^ABC = 37o
\(\Delta BDC\): ^ADB là góc ngoài tại đỉnh D
=> ^ADB = ^DBC + ^DCB = 37o + 36o = 73o
Chúc em học tốt!!!
a, xét tam giác ABD, tam giác HBD có
AB=BH ;góc ABD= góc HBD ( vì phân giác) ,BD chung
suy ra 2 tam giác bằng nhau theo trường hợp cạnh góc cạnh
b, vì 2 tam giác bằng nhau ( câu a) suy ra góc BAD= góc BDH mà BAD= 90 độ suy ra BHD =90 độ hay DH vuông góc với BC
C, nếu góc C =60 độ suy ra góc B = 0 độ suy ra góc ABD= 15 độ suy ra góc ADB = 90 độ -15 độ = 75 độ ( phụ nhau)
a: Xét ΔABD và ΔHBD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔABD=ΔHBD
b: Ta có: ΔABD=ΔHBD
=>DH⊥BC
a: Xét ΔBAD và ΔBHD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔBAD=ΔBHD