Một số tự nhiên chia cho 3 thì dư 1, chia cho 4 thì dư 2, chia cho 5 thì dư 3, chia cho 6 thì dư 4, và chia hết cho 11.
Tìm số nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a . Ta có :
a chia 3 dư 1 => a + 2 chia hết cho 3
a chia 4 dư 2 => a + 2 chia hết cho 4
a chia 5 dư 3 => a + 2 chia hết cho 5
a chai 6 dư 4 => a + 2 chia hết cho 6
=> a + 2 thuộc BC ( 3,4,5,6 )
Ta có : 3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 2.3
BCNN ( 3,4,5,6) = 22 x 3 x 5 = 60
Vậy a + 2 có dạng 60n , a chia hết cho 11 nên 60n - 2 chia hết cho 11
60n - 2 chia hết cho11
=> 60n - 2 + 11.22 chia hết cho 11
=> 60n - 2 + 242 chia hết cho 11
=> 60n + 240 chia hết cho 11
=> 60 ( n + 4 ) chia hết cho 11 . Mà 60 không chia hết cho 11 nên :
n + 4 chia hết cho 11
Vì n thuộc N , n + 4 chia hết cho 11 , Để a nhỏ nhât n phải nhỏ nhất . Vậy n + 4 = 11= >. n = 7
Vậy a = 7.60 - 2 = 420 - 2 = 418
Vâỵ số tự nhiên cần tìm là 418
Tích ủng hộ nha , thank you nhìu
Gọi số cần tìm là a
a+2 chia hết cho 3,4,5 và a chia hết cho 13
a+2 thuộc BC {3,4,5,6}
Mà BCNN{3,4,5,6}=3 x 22 x 5 = 60
a+2 thuộc B (60)={60;120;240;180;420;600;.....}
a thuộc = {58;118;238;178;418;598;...}
Vì a là số nhò nhất chia hết cho ba nên ta chọn : a = 598
**** cho mình nha của mình đúng đó!
Số tự nhiên đó là \(n\)thì ta có: \(n+1\)chia hết cho cả \(2,3,4,5\).
suy ra \(n+1\in BC\left(2,3,4,5\right)\)
Có \(BCNN\left(2,3,4,5\right)=60\)suy ra \(n+1\in B\left(60\right)\).
- \(n+1=60\)\(\Leftrightarrow n=59⋮̸7\).
- \(n+1=120\Leftrightarrow n=119⋮7\).
Vậy giá trị nhỏ nhất của \(n\)là \(119\).
Gọi số tự nhiên đó là \(n\).
Vì \(n\)chia cho \(6\)dư \(5\)và chia hết cho \(3\)mà
ta có \(6⋮3\)nên số dư của số đó cho \(3\)là số dư của \(5\)cho \(3\)là \(2\)(mâu thuẫn).
Vậy không tồn tại số tự nhiên thỏa mãn ycbt.
Gọi số đó là x.
Ta có: x + 2 chia hết cho 3; 4; 5; 6
=> x + 2 là BC(3, 4, 5, 6)
Vì BCNN(3, 4, 5, 6) = 60 => x + 2 = 60 . q (q \(\in\) N)
Do đó x = 60 . q - 2
Mặt khác x chia hết cho 11. => chọn q = 1; 2; 3; 4; ...
Ta thấy q = 7 thì x = 60 x 7 - 2 = 418 chia hết cho 11
Vậy số cần tìm là 418
@@
khó quá